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Accurately quantifying total greenhouse gas emissions (e.g., methane) from natural systems such as lakes,
reservoirs, and wetlands requires the spatial and temporal measurement of both diffusive and ebullitive (bub-
bling) emissions. Ebullitive emissions exhibit high spatial and temporal variability and as such are difficult to
measure. Traditional manual measurement techniques provide only limited localized assessment of methane
flux, often introducing significant errors when extrapolated to the whole-of-system. This is further exacerbated
when whole-of-region estimates are developed for inclusion in global greenhouse gas inventories. In this paper,
we directly address these current sampling limitations by comparing two robot boat-based sampling systems
with complementary sensing modalities to directly measure in real time the spatiotemporal release of methane
to atmosphere across inland waterways. The first system consists of a single Autonomous Surface Vehicle (ASV)
fitted with an Optical Methane Detector with algorithms to exploit the robot’s mobility and transect repeata-
bility for the accurate detection and quantification of methane bubbles across whole-of-system. The second
system consists of multiple networked ASVs capable of persistent operation and scalable to whole-of-region
monitoring. Each ASV carries a novel automated chamber-based gas sampling system to allow simultaneous
real-time measurement of methane across the waterway. These ASV systems provide a foundation for persistent
large-scale spatiotemporal sampling allowing scientists to develop whole-of-region greenhouse gas estimates
and greatly improve global inventory budgets. An overview of the single and multi-robot sampling systems is
presented, including their automated methane detection and sampling methodologies for the spatiotemporal
quantification of greenhouse gas release to atmosphere. Experimental results are shown demonstrating each
system’s ability to autonomously navigate, detect, and quantify methane release to atmosphere across an entire
inland reservoir. C© 2016 Wiley Periodicals, Inc.

1. INTRODUCTION

Quantification of greenhouse gas emissions to atmosphere
is becoming an increasingly important requirement for sci-
entists and managers to understand their total carbon foot-
print. Methane in particular is a powerful greenhouse gas,
approximately 34 times higher global warming potential
than carbon dioxide. Water storages are known emitters of
methane to atmosphere (Louis, Kelly, Duchemin, Rudd, &
Rosenberg, 2000). The spatiotemporal variability of releases
is dependent on many environmental and biogeochemical
parameters, such as hydrostatic pressure and carbon load-
ing (Joyce & Jewell, 2003). To accurately quantify this green-
house gas release, long duration and repeat monitoring of
the entire water body is required.
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There are two primary pathways for methane to be
released from water storages: (1) diffusion, and (2) ebul-
lition (or bubbling). Diffusion is the most common path-
way considered due to greater consistency (homogeneity)
across a waterway. Rates of methane ebullition represent
a notoriously difficult emission pathway to quantify with
highly variable spatial and temporal changes (Grinham,
Dunbabin, Gale, & Udy, 2011). However, the importance
of bubbling fluxes in terms of total emissions is increasingly
recognized from a number of different globally relevant
natural systems including lakes, reservoirs, and wetlands
(Bastviken et al., 2011).

Methane flux rates to atmosphere are generally ex-
pressed as a mass rate per unit area (e.g., mg m−2 d−1).
Quantifying rates due to ebullition is difficult as they are
controlled by both biological and physical processes. The
biological process of methanogenesis produces methane in
the anoxic sediment zone (Borrel et al., 2011) and leads to
supersaturation of sediment pore-waters and subsequent
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Figure 1. (Left) The multi-robot Inference Robotic Adaptive Sampling System. (Right) The Wivenhoe ASV on Little Nerang Dam,
Queensland.

bubble formation (Boudreau et al., 2005). Physical processes
can act to reduce sediment bed pressure allowing bubble
release from sediment zone and then travel rapidly to the
surface waters. Reduction of sediment bed stress can oc-
cur by lowering of atmospheric pressure and surface water
levels, as well as internal wave dynamics (Joyce & Jewell,
2003). Conversely, increasing sediment bed pressure will act
to reduce the probability of bubbling.

The dynamic influence on ebullition control processes
can result in rapid (sometimes hourly) changes in both
the area and intensity of bubbling (Maeck, Hofmann, &
Lorke, 2014). To estimate total emissions from systems in
which ebullition is the dominant contributor, the monitor-
ing framework must account for these dynamics changes in
bubbling area and intensity (Grinham et al., 2011). Modeled
estimates are currently unlikely to provide a viable alterna-
tive to estimating ebullition rates as the rate of change in
the control process can exceed those of modeled time-steps.
Another factor that can introduce error into estimates is the
variability of methane content in bubbles as they break the
water surface (Crawford et al., 2014; McGinnis, Greinert,
Artemov, Beaubien, & Wuest, 2006). Persistent measure-
ment of direct methane emissions represents the optimal
monitoring framework to obtain confident estimates of total
emissions from these systems. This also represents a critical
challenge to current manual survey efforts to quantify these
spatiotemporal greenhouse gas emissions and reduce the
uncertainty associated with bubbling fluxes. This is where
robotics can play a significant role.

In this work, two autonomous surface vehicle-based
systems designed for direct measurement of the diffusive
and ebullitive methane flux and an ability to persistently
and repeatedly monitor a wide spatial area are presented
and compared. The first system named the Wivenhoe ASV
consists of a 5 m long robotic catamaran to provide pay-
load capacity for autonomously moving an optical methane
detector (OMD) around the waterways for direct measure-
ment of changes in atmospheric methane concentration due

to ebullition (Figure 1(b)). This system is assumed most ac-
curate for whole-of-system ebullition detection, as it is ca-
pable of rapid and precise surveys across large areas. How-
ever, the Wivenhoe ASV also represents a significant cost if
persistent monitoring of a large number of systems is re-
quired (see Section 3.2.2). This will be of crucial importance
when developing whole-of-region greenhouse gas emission
estimates. The second system, named the Inference Robotic
Adaptive Sampling System, consists of multiple networked
robotic boats (see Figure 1(a)) and provides an open archi-
tecture allowing researchers to evaluate new sampling algo-
rithms with customizable scientific payloads on real-world
processes over extended periods of time.

The contributions presented in this paper are (1) the
development of a new multi-robot greenhouse Gas Sam-
pling System (GSS), (2) the evaluation of a multi-robot sam-
pling strategy with no a priori information to explore the
environment, and (3) an experimental comparison between
the two ASV systems for detecting and quantifying methane
release to atmosphere across an entire inland water storage.

The remainder of this paper is structured as follows:
Section 2 provides background information. Section 3 de-
scribes the ASVs and GSS used in this study. Section 4
describes the technical approach for the spatiotemporal
quantification of methane emissions using the ASVs, with
Section 5 outlining the sampling methodologies. Section 6
presents experimental results using the ASV systems on
an inland water storage and a discussion of the findings
and observations. Finally, Section 7 draws conclusions and
discusses future research.

2. RELATED WORK

Robotic platforms capable of persistent environmental mon-
itoring offer an efficient alternative to manual or static sen-
sor network sampling for studying large-scale phenomena.
Robotic monitoring of marine and aquatic environments has
received considerable attention over the past two decades
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Table I. Examples of ASVs used for environmental monitoring, focusing on operations on inland waterways.

ASV
(Manufacturer) Reference Size (m) Hull Type Propulsion Endurance

Payload
(kg) Environmental Sensors

Lutra (Platypus) N/A 0.81 × 0.47 Mono Propeller 3 hrs 7 Physical water samples,
temperature, pH,
Dissolved Oxygen,
sonar

Lutra Airboat
(Platypus)

Valada et al. (2012)
Yoo et al. (2015)

0.81 × 0.47 Mono Fan (x1) 1.5 hrs 3.5 Physical water samples,
temperature, pH,
Dissolved Oxygen,
sonar

Airboat (Custom
build)

(Dhariwal et al.
2007)

N/A Mono Fan (x1) 6 hrs N/A Physical water sample,
temperature,
fluorometer

Kingfisher
(Clearpath)

(Griffith et al.,
2015)

1.35 × 0.98 Catamaran Jets (x2) N/A 10 Camera, sonar

Q-Boat 1800P
(Ocean-
sciences)

Tokekar, Branson,
Hook, & Isler
(2013)

1.8 × 0.9 Mono Propeller 4 hrs 30 ADCP, wireless fish
tracking

MARE Girdhar et al.
(2011)

1.6 × 0.6 Catamaran Fans (x2) 2 hrs N/A Camera

CatOne Duranti (2015) 1.9 × 1.2 Catamaran Fans (x2) 8 hrs 50 ADCP, sonar
Lizhbeth Hitz et al. (2012) 2.5 × 1.8 Catamaran Propellers

(x2)
3 hrs N/A Water quality

sonde(winched)
ROAZ Ferreira et al.

(2009)
4.2 × 2.2 Catamaran Propellers

(x2)
N/A 350 Sonar, LiDAR

Wivenhoe Dunbabin,
Grinham, & Udy
(2009)

5.0 × 2.2 Catamaran Propellers
(x2)

24 hrs 150 Water quality sonde

Wave Glider
(Liquid
Robotics)

(Manley et al.,
2010)

2.08 × 0.6 Mono Wave > 1 year 18 Meteorology, ADCP water
quality sonde

C-Enduro (ASV) Savvaris, Oh, &
Tsourdos (2014)

4.1 × 2.45 Catamaran Propeller
(x2)

3 months 100 Configurable, fixed and
towed

Notes: N/A = Not Available.

(Dunbabin & Marques, 2012). While most studies have fo-
cused on underwater vehicles with restricted payloads and
endurance, there is now increasing focus on ASVs with
greater endurance and payload carrying capacity for large-
scale unsupervised environmental monitoring (Manley &
Willcox, 2010; Rynne & von Ellenrider, 2008; Wang, Gu,
& Zhu, 2008). These systems are primarily designed for
oceanographic surveys and are not particularly suitable for
relatively unexplored inland waterways with challenging
and often varying navigational requirements.

Recently, a series of ASVs have been designed and used
on inland waterways. Table I lists a number of these plat-
forms, their size, and payload capacity, including a refer-
ence to their use in environmental monitoring. As seen, the
styles of vehicle range from smaller monohull research class
boats with endurance of a few hours (some of which are
commercially available), up to larger vessels with greater
payload capacity and significant endurance, typically hav-

ing a catamaran hull style. For inland waterway monitor-
ing, a number of ASV platforms have adopted a pusher
fan propulsion system to try to reduce the influence of the
propeller-induced turbulence on the water measurements.
For this study, we have developed catamaran-style ASVs to
provide the necessary payload capacity as well as to mini-
mize obstruction of the airflow around the sensors. In addi-
tion, catamarans generally have low draft and low drag to
minimize wake, which can cause surface waves, resulting
in localized release of methane to the atmosphere.

Navigation around narrow inland waterways is of-
ten more challenging than navigating the ocean because
of issues such as above, below, and on-water obstacles
and global positioning system (GPS) reliability (e.g., in
mountainous and in forested systems). All vehicles in
Table I use some form of GPS and compass for waypoint
navigation, with larger vehicles also adopting sensors for
above and below water obstacle detection. A number of
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sensors have been used to detect obstacles and to identify
free-space paths. Hitz et al. (2012) use water depth only
for detecting shallow regions, whereas Ferreira et al. (2009)
and Leedekerken, Fallon, & Leonard (2014) use scanning
laser range finders and sonar to produce high-resolution
three-dimensional maps of the above- and below-water en-
vironment. Cameras have also been proposed for detecting
specific objects on the water (Ferreira et al., 2009; Dunbabin
et al., 2009). Scherer et al. (2012) have used cameras and
laser scanners (albeit on an aerial robot) to map the edges of
waterways and the free-space above the water as the robot
traverses them. Although high-resolution sensors such as
lasers, radar, and sonar can provide robust navigation capa-
bilities, for persistent monitoring their power consumption
can be a particular challenge. Exploiting lower power and
cost, sensing modalities such as vision and ultrasonics to
provide sufficient obstacle detection capabilities is a goal of
our multi-robot research.

In practice, most applications of ASVs are for short-
term experiments to validate existing or to generate new
models (Dunbabin & Marques, 2012). Recently, cross-
disciplinary research has been extensively using robots to
investigate assumptions around spatiotemporal homogene-
ity of environmental processes, such as toxic algal blooms
in lakes (Garneau et al., 2013). These studies show that
combined robotic persistence and spatiotemporal sampling
can provide significant new insight into environmental pro-
cesses. However, there are challenges to achieving persis-
tent robotic process monitoring, particularly in the complex
environments considered here. These primarily relate to
robotic platforms for persistent navigation within complex
and often dynamic environments and the ability to adap-
tively coordinate multiple robots to appropriately sample
the process of interest.

The overall coordination of the mobile sensors (robots)
is critical to accurately measure spatiotemporal environ-
mental processes. An emerging research area for ASVs is
that of mobile adaptive sampling in which the ASV can alter
its trajectory to improve measurement resolution in space
and time (e.g., (Zhang & Sukhatme, 2007)). The survey pa-
per of Dunbabin and Marques (Dunbabin & Marques, 2012)
summarizes advances in robotic adaptive sampling for
environmental monitoring. Past research has focused pri-
marily on the Gaussian process-based reconstruction of
stationary processes using combinations of mobile and
static sensors networks (Zhang & Sukhatme, 2007; Hom-
bal, Sanderson, & Blidberg, 2010). While demonstrating
the ability to capture and reconstruct various parameter
distributions, these studies offer simulation only or short
duration small-scale experimental validation. More recent
work has used multiple ASVs to experimentally compare
different search strategies (e.g., random, lawn-mower) to
reconstruct surface water parameters (Valada et al., 2012).
Developing and demonstrating multi-robot adaptive sam-
pling algorithms for the large-scale monitoring and tracking

of spatiotemporal environmental processes, such as green-
house gas release to atmosphere as presented here, is an
overarching goal of our research.

3. ROBOTIC SAMPLING SYSTEMS

Two alternate ASV systems for the spatiotemporal detection
and quantification of greenhouse gas release to atmosphere
across inland waterways are discussed. The first is the Com-
monwealth Scientific & Industrial Research Organisation
(CSIRO) developed Wivenhoe ASV (Dunbabin et al., 2009)
whose sensor payload and processing algorithms were de-
veloped to exploit the mobility and repeatability offered by
the ASV to rapidly detect and quantify methane ebullition.
The second is the Queensland University of Technology
(QUT) developed Inference Robotic Adaptive Sampling Sys-
tem, which has been developed to exploit robot persistence
and multi-robot operations to sample, quantify and map
both diffusive and ebullitive methane release to atmosphere
(Dunbabin, 2015). An overview of the ASVs and associated
payload systems are provided below.

3.1. The Wivenhoe Autonomous Surface Vehicle

3.1.1. System Overview

The Wivenhoe ASV is a custom developed platform capa-
ble of carrying a range of environmental sensors for mea-
suring important environmental water quality and atmo-
spheric parameters. The 5 m long electric-powered vehi-
cle is capable of carrying payloads of up to 150 kg with
an endurance of 24 hr (without methane sensor). The
ASV’s onboard navigation sensors include a scanning laser
range-finder (Hokuyo, Osaka, Japan) for obstacle detection,
GPS (u-blox, Thalwil, Switzerland) for position and speed,
magnetic compass (LORD, Williston, USA) for heading, and
water depth (Navman, New Hampshire, USA). The ASV is
capable of navigating unaided throughout the complex wa-
ter storage along prespecified paths and speeds and has
onboard obstacle avoidance processing capabilities using
a 1.4 GHz Pentium M CPU running Linux and a soft-
ware architecture built on the Distributed Data eXchange
framework (DDX) (Corke, Sikka, Roberts, & Duff, 2004).

Communications on the ASV is via a 2.4 GHz wireless
embedded system (XBee IEEE 802.15.4) allowing serial com-
munication between the vehicle and existing static floating
sensor nodes as well as remote operators.

3.1.2. Optical Methane Detector

In this study, the Wivenhoe ASV was fitted with an Op-
tical Methane Detector (OMD) sensor (Heath Consultants,
Texas, USA). The OMD is a survey instrument typically used
for methane leak detection in landfill sites and is capable
of detecting atmospheric methane concentration as low as
1 ppm. The OMD employs an open-path infrared beam de-
tector specific to methane and outputs a measurement every
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Figure 2. The Wivenhoe ASV illustrating the Optical Methane
Detector (OMD) and the wind speed and direction sensors used
for methane detection and quantification. The solar panels pro-
vide power for both propulsion and payload systems, with
computing and communication hardware housed underneath
the solar panels.

0.13 s (7.6 Hz). The manufacturer indicates minor cross sen-
sitivities to propane and ethane; however, gas analysis from
bubble traps at the study site revealed below detectable lim-
its of these gases in the bubbles. This sensor weighs approxi-
mately 14 kg (without battery) and has a power requirement
of 60 W.

The OMD is mounted on the front of the ASV with a
sensor height of approximately 200 mm above the water sur-
face as seen in Figure 2. To complement the OMD, two ad-
ditional sensors were integrated to the ASV: (1) wind speed
and direction (Davis Instruments, California, USA) and (2)
a light logger (Odyssey, Christchurch, New Zealand).

This ASV and OMD sensor combination has the ad-
vantage that it can continuously measure methane while
moving (see Section 4.1 for details on the real-time pro-
cessing methodology), providing increased spatial coverage
and repeatable measurement trajectories without human in-
tervention. Other advantages include the low-interference
of its own structure to the flow of air through the sensor
compared to monohull boats. The ASV has electric propul-
sion, and the vehicle’s draft is minimal to limit surface wave
disturbances or turbulence, which could influence bubble
release, particularly in the shallower regions of the wa-
ter reservoir. Finally, it allows accurate georeferencing and
time-stamping of all measurements for real-time and/or
post-analysis. However, a limitation is that the OMD can
only detect ebullition (bubbling), as diffusion only increases
the local atmospheric methane concentration by <0.01 ppm,
which is one order of magnitude below the resolution of the
OMD.

Figure 3. One of the ASVs from the Inference system. The nav-
igation sensors, computing, and batteries are located under-
neath the two solar panels. The scientific payload, in this study
the GGS described in Section 3.2.2, is attached to the moon-pool
opening underneath the camera.

3.2. The Inference Autonomous Surface Vehicles

3.2.1. System Overview

The multi-robot Inference system consists of custom-
designed ASVs for persistent and cooperative operation in
challenging inland waterways. The overall hull shape (see
Figure 3) has four key features: (1) a low draft allowing
traversal in shallow water, (2) open sides and low curved
top deck to minimize windage and the associated drift when
station keeping during sampling, (3) a large top surface
area angled for maximizing energy harvesting from the so-
lar panels, and (4) a moon-pool (open center section) with
standardized attachment points to mount custom sensor
packages. The overall dimensional and mass specifications
for the ASVs, including details of the battery and propulsion
systems, are presented in (Dunbabin, 2015).

These relatively low-cost ASVs are capable of carry-
ing additional custom payloads weighing up to 10 kg.
The payload is mounted under the moon-pool opening.
Each ASV has a suite of low-cost navigation sensors, which
include a GPS, a magnetic compass with roll and pitch, and
a depth sensor for measuring bathymetry. A USB camera
(Microsoft LifeCam) mounted above the moon-pool and
four Maxbotix ultrasonic range sensors mounted just un-
der the leading and trailing edges of the top deck are used
for obstacle detection. These sensors are used to detect the
edge of the water and at-surface structures such as reeds,
trees, and water lilies. To minimize power consumption and
cost, typical scanning laser-based or radar sensors are not
currently used, although they can be added if required in fu-
ture scenarios. To facilitate vision-based obstacle avoidance,
each ASV has an Odroid C1 ARM Cortex-A5 1.5 GHz quad
core CPU running the Robotic Operating System (ROS) and
OpenCV.

There are two communication systems onboard the
ASVs. The first is a 2.4 GHz wireless embedded sys-
tem (XBee IEEE 802.15.4), allowing serial communication
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Figure 4. The GSS used to measure greenhouse gas (methane)
release to the atmosphere from the inland water storages. The
GSS has a total weight of 4.6 kg and is attached to moon-pool
section of the ASV.

between each vehicle as well as with existing static floating
sensor nodes. The second is a 2.4 GHz WiFi system allowing
communication to a gateway located on a floating platform
on the water storage (not used in this study).

3.2.2. Gas Sampling System

Figure 4 shows the self-contained greenhouse GSS devel-
oped to autonomously measure both the methane efflux
from waterways. This payload is mounted underneath the
Inference ASV via attachment points located around the
moon-pool opening. The GSS automates the traditional
manual chamber-based sampling process (Grinham et al.,
2011) and consists of three primary components: (1) A frame
allowing the lowering and raising of a chamber into the wa-
ter, (2) a chamber fitted with a continuous methane gas
(CH4) sensor (Dynament, Mansfield, United Kingdom) and
purge valve, and (3) a physical gas sampling unit. The con-
tinuous methane sensor is a miniature, lightweight (0.015
kg) and low-power (0.4 W) optical sensor using nondis-
persive infrared (NDIR) with a sampling resolution of 0.01
%v/v (or 100 ppm). The sampling protocol using the GSS
is described in Section 4.2.

The advantages of the Inference ASV and GSS combina-
tion are their relatively lower cost compared to the OMD-
based system and, depending on the operating/sampling
scenario, their ability to persistently monitor the environ-
ment (days to months). Currently, the cost of each Inference
ASV is approximately 6.9% of the total cost of the Wivenhoe
ASV. Table II provides a summary of the cost of the key
hardware components relative to the total cost of each ASV.
As can be seen, the OMD represents the most significant
cost of the Wivenhoe system, whereas the hull structure is

Table II. Comparison of the cost of key ASV hardware compo-
nents relative to the total cost of both the Wivenhoe and Inference
ASVs.

Item
Wivenhoe ASV

(%)
Inference ASV

(%)

Structure (hull) 8.7 50.2
Propulsion 1.3 6.9
Batteries 0.6 3.0
Solar panels and charger 1.0 3.0
Navigation sensors 15.2 13.9
Computing hardware 1.0 3.1
Communications 0.3 3.9
Miscellaneous hardware 0.9 6.9
Methane sensor systems 71.0 9.1
Total 100.0 100.0

most significant for the Inference ASV, albeit at a fraction of
the total cost of the Wivenhoe ASV. The disadvantage when
compared to the Wivenhoe ASV and OMD combination de-
scribed above is that measurements need to be taken while
the ASV is stationary, limiting the number of samples per
day and the associated spatial coverage.

3.2.3. Operating Scenario

The Inference Robotic Adaptive Sampling System was de-
veloped with the goal of providing a shared resource of
multiple networked ASVs to allow researchers to remotely
evaluate new sampling algorithms on real-world processes
over extended periods of time. A typical use scenario
proposed for the system is outlined below:

1. The ASVs, each carrying a scientific payload, are de-
ployed on a water body.

2. Based on a desired sampling protocol (e.g., ran-
dom, adaptive) and process modeling requirements,
new sampling locations are determined. This can be
achieved from either a remote centralized or an onboard
decentralized process.

3. Determine which ASV goes to each of the updated
sample locations. This may involve optimizing a cost
function (e.g., minimizing energy and/or travel time,
maximizing solar energy harvesting).

4. Each ASV navigates to its commanded sampling
location.

5. Each ASV takes its scientific measurement and reports it
back through the network.

6. Repeat Steps 2-5 until a termination condition is
met.

The system described in this paper is working towards
this goal with a preliminary experimental evaluation of this
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Figure 5. Example of the measured atmospheric methane concentration and variation along the same transect at different times of
day using the OMD attached to a boat on Little Nerang Dam, Queensland, Australia. The spikes (increase) in the surface methane
concentration result from the OMD passing through a methane bubble, which has emerged from the water’s surface to atmosphere.
These methane bubbles are predominantly released from the shallower Western and Eastern branches of the reservoir.

scenario using a simplified random exploration algorithm
as described in Section 5.2.

4. SPATIOTEMPORAL QUANTIFICATION OF
METHANE: TECHNICAL APPROACH

The goal of this study is to measure greenhouse gas emis-
sions (efflux) across entire waterways. As the sensors con-
sidered here measure the change in atmospheric methane
concentration (e.g., in parts per million), methods are re-
quired to convert the measured concentrations to a stan-
dardized flux rate in mg m−2 d−1. Two different strategies
for the quantification of methane release to atmosphere via
ebullition have been developed and evaluated to comple-
ment the respective payload and navigation capabilities
of the two ASV systems described in Section 3 and are
discussed in the following sections.

4.1. OMD-Based Methane Bubble Detection and
Volume Estimation from a Mobile Platform

The OMD provides a continuous measurement (≈ 7 Hz) of
methane concentration in the air passing through its optical
sensor path. Whilst the sensor was originally designed for
detecting methane leaks at landfill sites, we repurposed the
OMD and attached it to a boat to evaluate whether it could
(1) detect the presence of methane bubbles as it moved just
above the water’s surface and (2) if so, could the signal be
used to estimate the volume and hence the rate of methane
release to atmosphere via ebullition.

An initial experiment was conducted in which the sen-
sor was attached to a boat approximately 200 mm above
the waterline and driven along a track into a region where
methane bubbling was visibly observed. Figure 5 shows the
measured atmospheric methane concentration as the boat

Journal of Field Robotics DOI 10.1002/rob
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moved along the track for two repeated transects (midday
and afternoon) from the deeper region of the water stor-
age to the shallower distal arm where bubbling was ob-
servable. As can be seen, when the OMD passes over a
bubble event, the atmospheric methane concentration sub-
sequently increases (spikes) before returning to background
levels. In addition, it can be observed that the extent (length
along the transect) of the bubbling zone varies between
transects. As such, quantifying methane release to atmo-
sphere and identifying the spatial and temporal variabil-
ity of this zone using the OMD were a key focus of our
work.

A methodology for correlating the measured time his-
tory from the OMD to characterize the individual bub-
ble release from the water’s surface and quantify bubble
size was developed. Here, we exploit the mobility of a
robotic platform to improve the spatial coverage and con-
sistency of measurements. A Gaussian gas plume disper-
sion model (Beychok, 2005) is used to correlate the de-
tected time signature of methane concentration from the
OMD (Figure 5) to a series of discrete bubbles that broke
at the water’s surface. For detailed methodology and lab-
oratory evaluation associated with bubble detection and
volume estimation, see (Grinham et al., 2011). However, we
briefly describe the critical components of these processes
below.

4.1.1. Bubble Event Quantification

The methodology behind transforming the recorded time
history of methane concentration through the moving
OMD, which is attached rigidly to the ASV for estimating
the bubble size that broke at the water’s surface, is presented
below. To interpret this data, a number of assumptions have
been made: (a) the ASV is assumed moving in a forward
direction at a known speed (note that the data during turns
and while stationary is not considered in this study), (b) the
principle component of flow through the sensor is parallel to
the direction of travel, (c) the influence of the ASV structure
on the forward flow is negligible, (d) the wind is horizontal
to the water’s surface at the sensor detection height and its
instantaneous speed and direction is known, (e) the plume
is Gaussian in the vertical distribution based on the previous
section, (f) a bubble is defined as a continuous time segment
that exceeds a preset methane concentration level, and (g) a
bubble event is a sequence of spikes in close succession to
each other but in the same continuous time segment.

The output from the OMD represents an integrated
methane concentration across the optical path of the sensor.
In addition, as the OMD is only sensitive to methane, we
can ignore the contribution of other gases in the bubble and
determine the equivalent volume of a 100% methane bubble
(V ) originating at the water’s surface. Assuming a rectan-
gular segment of constant methane concentration passing

through the OMD, V can be estimated between the time
segment (ts ≤ t ≤ tf ) by:

V = 1
ρCH4 × 106

∫ tf

ts

cawzlomdvdt, (1)

where ρCH4 is the density of methane at ambient conditions,
ca is the instantaneous average methane concentration in
parts per million (ppm) as measured by the OMD, wz is the
vertical extent of the collapsed volume, lomd is the sensor
optical width, and v is the instantaneous relative velocity of
gas passing through the sensor field.

To obtain a bubble volume estimate, we must map the
actual distributed methane concentration of the plume to a
volume of constant methane concentration. Therefore, it is
assumed that the actual plume has an instantaneous Gaus-
sian distribution in the vertical (z) direction approximated
by:

cz = cke

−(z)2

2σ 2
z , (2)

where ck is the measured methane concentration at time k,
z is the vertical distance relative to the sensing path, and
σz is the vertical plume dispersion standard deviation de-
termined to be σz = 0.04 m based on the bubble dispersion
model developed in (Grinham et al., 2011).

The integral of this vertical Gaussian distribution is:

Iz =
∫ ∞

−∞
czdz = ckσz

√
2π. (3)

Therefore, the vertical height of the plume assum-
ing a rectangular distribution with constant methane
concentration is:

wz = Iz

ck

= σz

√
2π (4)

Strictly, the integral should be between the water sur-
face and plus infinity. However, as σz is small and there are
more than 4 standard deviations from the sensor to the wa-
ter’s surface, then over 99.9% of the distribution is enclosed
with the above approximation and is considered acceptable
for this analysis.

An individual bubble (i) is defined by the continuous
time segment bounded by a prespecified threshold (e.g.,
ck > 1.7 ppm). As the measurement is discrete samples, we
assume the velocity of air passing through the OMD v (com-
pensated for vehicle and wind speed) is constant between
time k and k − 1 (approximately 0.13 s). The detected mass
of methane (dmk) passing through the OMD between time
k and k − 1 is estimated as:

dmk = ρCH4

(
ck + ck−1

2 × 106

)
wzlomdvdt, (5)

where ck and ck−1 are the current and previously measured
methane concentrations in parts per million, respectively.
Therefore, the total bubble mass for bubble i (mi) is the
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Figure 6. The sequence of actions required to measure greenhouse gas using the GSS.

sum of all detected methane values above the preset thresh-
old bounded by (tsi ≤ t ≤ tfi

), with the volume of bubble i

assuming 100% methane concentration is given as:

Vi = mi

ρCH4

(6)

The instantaneous flux rate can be approximated by
dividing the total methane bubble mass (mi) by the time
between successive bubble detections (�t) and by the swept
area of the sensor over that time (lomdv�t).

4.2. Gas Sampling System Methane Flux
Quantification

The second approach for methane detection and efflux
quantification considered in this study exploits the multi-
robot capabilities and the persistence of the Inference ASVs
to achieve spatial coverage. Complementing the approach
of Section 4.1, the Inference ASVs conduct stationary mea-
surements of gas efflux using the GSS shown in Figure 4.
This method has the advantage that it measures the total
methane release (ebullition and diffusion), albeit at reduced
spatial coverage.

The process of sampling the greenhouse gas being re-
leased from the water to the atmosphere using the GSS is
illustrated in Figure 6 and consists of four steps. First, the
ASV navigates to the desired sampling location it goes into
a weak station-keeping mode. This limits the control input
to the motors to reduce any disturbance that may influence
the CH4 efflux at the expense of a slightly increased station
bound. At this point, the chamber purge valve (see Figure
4) is opened and the chamber lowered using the linear ac-
tuator to achieve a desired air volume within the chamber
(Figure 6(A-B)). The second step involves closing the cham-
ber purge valve and letting the methane concentration
within the chamber increase for a predetermined incubation
time (see Section 4.2.1 for a discussion on incubation time).
During incubation, the methane sensor continuously mea-
sures the concentration within the chamber (Figure 6(B-C)).

At the end of the incubation, the third step (Figure 6(C))
calculates the overall gas efflux rate from the gradient of
the recorded methane concentration time history. Also a
physical sample of gas from the chamber can be collected
for laboratory analysis using the gas sampling unit (see
Figure 4). This involves a sequence of actions that first
purges the sample tube using the pump and then loads
a pre-evacuated 12-mL vial into the sampling unit. A linear
actuator on the unit drives a hypodermic needle into the
vial while pumping gas from the chamber. Once 20 mL of
gas has been pumped into the vial (over pressure sampling
technique), the needle retracts, and the unit discharges the
vial ready for the next sample.

After sampling is completed, the final step involves
opening the chamber purge valve and raising the chamber
out of the water. At this point, the ASV can move to the next
sample location.

4.2.1. Gas Sampling System Sampling Protocol

A key consideration for greenhouse gas sampling using
the GSS is determining the minimum incubation time that
maximizes detection accuracy. During the sampling phase,
the concentration measured by the methane sensor is polled
every 2 s for the entire incubation period. A linear least
squares line of best fit is applied to this time history and
the gradient used to calculate the flux rate. However, the
output from the continuous methane sensor in the GSS is
quantized to 0.01% (100 ppm), which is a relatively coarse
measurement when compared to the OMD for estimating
flux rates. While diffusive fluxes are typically less than
50 mg m−2 d−1, ebullitive fluxes in our region can be has
high as 22,000 mg m−2 d−1 (Grinham et al., 2011). Varying
the incubation time and/or head-space ratio (i.e., the ra-
tio of chamber surface area (Ac) to its internal air volume
(Vc)) can be used to achieve a desired detection accuracy.
Figure 7 shows the predicted variability in relative mea-
surement error (i.e., the percentage error between a true
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Figure 7. The predicted percentage relative measurement er-
ror of methane flux rate with incubation time for the prototype
GSS (see Section 3.2.2) with a sensor output resolution of 0.01%
(100 ppm). Two efflux rates are considered, 1,000 and 5,000 mg
m−2 d−1 with head-space ratios (Ac/Vc) of 10 and 20 m−1).

methane flux to that which can be measured by the GSS) ver-
sus incubation time for different methane efflux rates and
head-space ratios. As can be seen, longer incubation times
and higher efflux rates lead to reduced errors as with
increasing head-space ratios. However, longer incubation
times mean less sample points can be performed per day. In
this study, the primary interest is the detection of methane
“hot spots,” that is, where it is bubbling from the water.
Therefore, incubation times of 15-20 min were chosen here

to allow detection of methane rates as low as 1,000 mg m−2

d−1, albeit at lower accuracy. While increasing the head-
space ratio even more will improve the detection perfor-
mance, there is risk of the sensor getting too close to the
water and splashed by waves. Further improvements are
expected as new sensors with higher resolution also become
available.

Figure 8 shows examples of raw measured time histo-
ries of methane concentration from controlled laboratory
experiments using the GSS. Here, the 300 mm diameter
chamber was submerged in water to give a fixed head-space
ratio of 10 m−1 and methane gas bubbles introduced via a
syringe underwater to achieve a flux rate of 1,000 and 5,000
mg m−2 d−1 for 15 min. The effect of sensor output quanti-
zation can be seen with only a 0.02% rise for the 1,000 mg
m−2 d−1 over the 15 min incubation. Fitting a least squares
line of best fit to the trace gives an estimated flux rate in
these experiments of 1,187 and 5,192 for the inputs of 1,000
and 5,000 mg m−2 d−1, respectively, which is consistent with
Figure 7.

5. STORAGE-SCALE GREENHOUSE GAS SAMPLING
METHODOLOGIES

The two ASV systems described in Section 3 exploit dif-
ferent sampling modalities to maximize greenhouse gas de-
tection and quantification. The OMD-based system requires
a larger vehicle to undertake repeat transects due to pay-
load size and weight; however, it provides a continuously
moving measurement. The GSS-based approach while
requiring more time to collect each sample can be

Figure 8. The raw measured methane concentration inside the GSS chamber during controlled laboratory experiments over a
15-min incubation time and head-space ratio of 10 m−1. Two experiments are shown with methane gas introduced to the chamber
at rate of 1,000 and 5,000 mg m−2 d−1, respectively. The effect of sensor quantization is clearly visible.
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Figure 9. The bathymetry profile of Little Nerang Dam,
Queensland, and the repeated sampling path followed by the
Wivenhoe ASV (red).

implemented across multiple robots to improve spatial cov-
erage with the possibility to exploit adaptive sample site se-
lection sampling allowing exploration across water bodies.
The following outlines the sampling approaches adopted in
this paper for the two systems.

5.1. Single ASV Repeat Transects

The OMD-based methane measurement approach de-
scribed in Section 4.1 exploits the Wivnehoe ASV’s ability
to repeatedly follow a transect in order to obtain continu-
ous spatial coverage and temporal measurements across an
entire water body.

For the results presented in Section 6, a predefined tran-
sect across a water reservoir (Little Nerang Dam, Queens-
land, Australia), shown in Figure 9 was specified for the

ASV. Because of the potential errors in localization result-
ing from multipathing of GPS signals from the steep-sided
catchment (particularly in the Eastern and Western dis-
tal arms) and significant disturbances from strong winds,
the ASV required real-time reactive obstacle detection and
avoidance for safe navigation. Details of the obstacle avoid-
ance and general tracking performance are presented in
previous work (Dunbabin & Grinham, 2010).

This ability to follow repeat transects allows capture
of the spatial and temporal characteristics of methane
ebullition across the entire waterway.

5.2. Multi-robot Sample Site Selection

The GSS-based multi-robot system utilizes a set of smaller
Inference ASVs to collect static measurements over space
and time. While the system can implement repeat transects,
its slower measurement rate (due to the required stationary
sampling incubation time) and slower travel speeds mean
that continuous measurements along a path is not feasible
at the scale of the process being observed (see Section 1). As
such, it is considered more amenable to use multiple sensing
assets and adaptive path planning approaches, particularly
for previously unexplored environments to improve spatial
and temporal coverage.

In this study, to demonstrate the sampling system con-
cepts, a simplified random walk-based algorithm is pro-
posed for selecting locations for n ASVs to sample the
environment in an attempt to identify regions with high
methane gas flux. There are two key assumptions: (1) the
boundary of the water body is known from sources such
as GIS, and (2) the ASVs can communicate between each
other and can share their list of previous and next sample
locations. In this study, we did not use bathymetry, but it
could be used in the future to help guide the algorithm.

The selection of new sample locations is based on an
online random walk and potential fields. Iterating through
each robot, the basis of the algorithm is as follows:

1. All previously sampled sites for all robots are
represented as two-dimensional Gaussian potentials
centered at those points with fixed amplitude and
standard deviation.

2. A random position at radius r from the current position
is selected. If this position is not on land, and the value
from the closest Gaussian potential is less than a thresh-
old, this becomes the next sample point for that robot. If
this condition is not met, the process is iterated until a
location can be found. If no location can be found after
a set number of iterations, the search radius is increased
by �r and the process repeated until a site is found or
some termination criteria are met.

3. To increase local intensification of sampling in methane
“hot-spots”, if the measured flux rate at the robot’s cur-
rent location exceeded some threshold, the search radius
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for the next sample step is set to βr , where (0 < β ≤ 1)
and the potential threshold trigger relaxed.

The values of r , β, and number of samples in this
study were arbitrarily chosen based on experience at these
reservoirs to demonstrate the approach within a reasonable
time frame while attempting to span the entire reservoir.
Selections of more optimal values of these parameters are
possible avenues for future research.

Once the new set of sample locations (waypoints) for
each robot is calculated, each robot then drives in a straight
line toward the goal. If the water depth falls below a thresh-
old (i.e., too shallow) or an obstacle is detected, the vehicle
starts to move either clockwise or counterclockwise around
the contour until a new straight line to the goal can be
achieved. This entire process is repeated for all robots until
a desired number of samples are collected or some other
termination condition is met.

6. RESULTS

A series of experimental campaigns with both the Wivenhoe
and Inference ASV systems have been conducted on Little
Nerang Dam (LND) in South East Queensland (S28◦08.628′

E153◦ 17.085′) to evaluate the complementary greenhouse
gas sampling methodologies above. This drinking water
reservoir is a narrow waterway with a steep-sided catch-
ment having a surface area of 0.5 km2 and mean depth of
14 m. LND is an established study site and was selected
because it consistently exhibits regions of significantly high
methane ebullition and provides a range of challenging op-
erational conditions for evaluating robotic systems. Experi-
mental results from validation campaigns in 2009 (Wivenhoe)
and 2015 (Inference) are presented below.

6.1. Single-ASV Bubble Detection

The Wivenhoe ASV fitted with the OMD was tasked with per-
forming repeated transects that crisscross the entire reser-
voir from the Northern dam wall and then south through
both distal arms and back to the dam wall. Figure 9 shows
the transect that was repeated by the ASV (shown in red)
and the prerecorded bathymetry profile of the reservoir.

In total, seven transects were conducted over 3 days
in October 2009 to evaluate the spatiotemporal ebullition
characteristics. Each transect was approximately 7.8 km in
length and took on average 149 min to complete. During
the missions, the OMD-based ebullition detection system of
Section 4.1 was used to identify when bubbles were detected
and to estimate the associated bubble size and volume of
methane. Each detected methane bubble was georeferenced
based on the ASV’s GPS position. Figure 10 illustrates the
rate of detected bubble volume from two of the transects
(midday and morning mission). As can be seen, the spatial
extent of the region where bubbles were detected varies
significantly in addition to rate of the detected bubbles.

A summary of the results from all seven transects is
given in Table III, showing the number of detected bubbles,
the mean bubble volume, and an estimation of the ebullition
zone. In this study, the ebullition zone (i.e., the estimated
surface area that is emitting bubbles) is calculated by grid-
ding the entire water storage into 20 m × 20 m cells and
summing all cells in which a bubble was detected. As can
be seen, there is significant variability in the number of
detected bubbles and their volume, as well as the spatial ex-
tent between each transect (several hours). This spatial and
temporal variation of methane ebullition, which we can vi-
sually observe on the water’s surface on as little as 30-min
timescales when in the field, illustrates the difficulty in accu-
rately quantifying this process using fixed point sampling.
It also highlights the need to perform repeated transects
over long periods of time to understand the true spatiotem-
poral variability of methane release to the atmosphere. The
location of all detected bubbles using this approach from all
the transects along with the estimated methane flux rate to
atmosphere is shown in Figure 13(a).

In addition to being able to localize the detected bub-
ble, the system also allows the detected bubbles to be char-
acterized in terms of other measured parameters from the
ASV. For example, Figure 11 shows the cumulative distri-
bution of detected bubbles against the depth of water at
their detection location for all seven transects. The ma-
jority of detected bubbles occur in less than 5 m water
depth. The results shown in Figure 11 is consistent with
limited published results on methane ebullition using man-
ual measurement technique (Joyce & Jewell, 2003). This
information could potentially be used to generate utility
functions for use in future adaptive sampling algorithms
for both the OMD and GSS-based sampling approaches
to improve the efficiency of monitoring and quantification
programs.

The OMD-based method of methane ebullition detec-
tion and quantification provides a repeatable continuous
measurement to provide unique spatial and temporal maps
of methane hot spots. However, the size, weight, and op-
erating power of the OMD (60 W) required the use of a
larger platform, such as the Wivenhoe ASV. The Wivenhoe
ASV has an effective energy capacity of 2,016 Wh stored in
two onboard lead-acid batteries and 300 W of solar pan-
els. However, because of the tight maneuvering required,
particularly in the distal arms of LND, the average power
consumption for propulsion, computing, and payload was
estimated at 491 W. This limited the ASV to only two
transects before charging or replacement of the batteries
was deemed necessary in the experimental campaign (see
Section 6.3.2 for further discussion).

6.2. Multi-ASV Gas Sampling

During January to May 2015, a series of experimental tri-
als of the Inference ASVs were conducted on Little Nerang
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Figure 10. Illustration of the variability in the number of bubble and their spatial and the calculated methane volume rate using
the proposed OMD method for a midday transect (Run 1), and a morning transect (Run 3). Shown is the outline of the water
reservoir (black) and the calculated volume rate (vertical gray lines).

Dam, Gold Creek Reservoir (S27◦ 27.583′ E152◦52.753′) and
Hinze Dam (S28◦ 03.413′ E153◦ 16.921′) to evaluate different
aspects of their sampling, navigation, and station keeping
performance as well as power consumption.

Two of the four Inference ASVs were fitted with GSS
units and used in the evaluation trials. During navigation
trials, the ASVs implemented the controller as described
in (Dunbabin & Grinham, 2010) and were commanded to
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Table III. Summary of the number of detected methane bubbles, mean bubble volume, and estimated ebullition zone for each
transect of the ASV using the OMD-based method described in Section 4. Values represent totals or average ± SE..

Transect Day, Start Time AEST Number of detected bubbles Bubble volume (mL)* Ebullition zone area (m2)

Run 1 Day 1, 12:36 421 2.23 ± 0.32 34,000
Run 2 Day 1, 16:08 104 0.74 ± 0.14 15,200
Run 3 Day 2, 07:44 70 0.34 ± 0.05 9,200
Run 4 Day 2, 10:20 183 2.09 ± 0.44 23,200
Run 5 Day 2, 16:17 54 0.39 ± 0.48 8,800
Run 6 Day 3, 08:48 103 2.94 ± 0.48 8,800
Run 7 Day 3, 11:54 159 0.68 ± 0.08 13,600

*Equivalent 100% methane concentration.

Figure 11. The cumulative distribution of detected methane
bubbles against water depth using the Wivenhoe ASV and OMD-
based measurement system for all transects (Modified from
(Grinham et al., 2011)).

undertake a series of linear transects. The mean cross-track
error was calculated to be 2.8 m using the ASV’s onboard
GPS position as ground truth with an average speed of
0.7 ms−1. The average power required to achieve this track-
ing and speed performance was estimated to be 43 W.

The ASVs are required to remain effectively stationary
during the incubation period of the gas sampling protocol.
This requires an ability to “station-keep” at a GPS loca-
tion. However, the ASVs only have two fixed thrusters for
differential steering with no means for lateral control. Ad-
ditionally, during station-keeping the motors should also
not generate too much local turbulence as that may affect
the gas measurement, particularly in shallow water. There-
fore, in this study a “weak” station-keeping protocol was
implemented whereby when the ASV is within 10 m of
the desired sample location, it turns to align its bow or

Figure 12. Two Inference ASVs fitted with GSSs during testing
in South East Queensland. The retracted gas sampling unit is
visible underneath the ASV on the right.

stern (taking smallest alignment angle) directly toward the
goal. It then moves forward or backward (depending on the
closest alignment) with the maximum allowable thrust de-
creased linearly with distance to the goal. No integral action
was currently added to remove offsets due to wind or other
disturbances. This simple strategy proved effective in prac-
tice with a mean position error of 3.1 m achieved based on
the ASVs onboard GPS position (see Section 6.3.3 for fur-
ther discussion). The average power consumption during
station-keeping was estimated at 7.6 W for the conditions
experienced at the water reservoirs considered here.

An experimental evaluation of the multi-ASV sampling
protocol using the two Inference ASVs with gas sampling
payloads (see Figure 12) was conducted on Little Nerang
Dam. Using previously collected georeferenced outlines of
the water’s edge (boundary) the sample site selection algo-
rithm described in Section 4 was implemented. Note only
the boundary of the reservoir and not the bathymetry was
used in this study. The sample selection algorithm was run
with a total of 30 samples for each ASV, a step radius of
200 m, an intensification factor of 0.5, and a 2D Gaussian
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Figure 13. Sampling locations and ebullition detections from 15-min incubations using two ASVs on Little Nerang Dam, Queens-
land. Right: The trajectory and resulting sample locations indicated by the circles for ASV1 and triangles for ASV2. The start location
for both ASVs was at the dam wall located at the northernmost end. The circles and triangles highlighted in yellow indicate the
online chamber measurements that exceeded 1,000 mg m−2 d−1. Left: An aerial image of Little Nerang Dam with all the OMD-based
detected bubbles from all transects and estimated methane flux rate to atmosphere overlaid showing the regions dominated by
methane ebullition.

potential standard deviation of 20 m (see Section 5.2). These
values were chosen based on prior experience of the spatial
extent of the ebullition zone as described above and to at-
tempt to span the entire storage in a fixed time. The trigger
value was set at 1,000 mg m−2 d−1 with 15 min incubations.
The time to complete the experiment was approximately
10.5 hr. Figure 13(b) shows the results of implementing
the sample strategy for both ASVs. These results show the
ASV’s ability to implement the sample protocol to explore
and navigate the water reservoir.

The online detections of methane exceeding the trig-
ger threshold (markers in yellow) was 8 times. Although
the spatial density of exceedances are less than that from
the previous OMD-based campaign, their location is con-
sistent with the results collected by the OMD-based system

(Figure 13(a)). As ebullition is difficult to predict and model
(see Section 1), a number of factors may have contributed to
the lower observed ebullition rate, including a higher dam
level between the campaigns (approximately 2 m) and lower
wind activity to cause internal disturbances. Qualitatively,
the visible activity was less than in prior campaigns, and as
such, the likelihood of placing a sensor in an ebullition zone
is reduced. However, this does reinforce the need to have
multiple assets simultaneously sampling the environment
to capture these spatially and temporally discrete events.

Although the random walk algorithm implemented in
this experiment achieved reasonably good coverage of the
reservoir, it did highlight some general deficiencies of the
approach. First, there is no guarantee that complete cover-
age will be achieved given a fixed number of samples. For
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example, as seen in Figure 13, only ASV1 travels into the
Southern reaches of the Eastern distal arm, whereas both
ASVs collected sampled in the Western distal arm. Further-
more, the spatial coverage is not balanced as seen toward the
middle of the reservoir where both ASVs selected sample
locations close to the Western bank. In terms of the modifica-
tion of the step size between samples, from the 60 samples
collected, 50 were at 200 m, 5 were at 100 m, 4 were at
250 m, and 1 at 300 m. This illustrates in this particular case
that spatial density of samples was not significantly high to
force larger separation of future samples. Also, even though
eight methane threshold exceedances were observed, only
five resulted in the reduced 100 m step sizes as part of the
intensification component of the algorithm. This was later
determined to be the result of the algorithm not being able
to randomly select a sample point at that radius within the
set number of iterations allowed due to the step radius (r)
being greater than the width of the narrow Southern arm.
As such, the radius was increased by �r , in this case 50 m,
and the process repeated until a valid sample location was
found. Whereas the random walk approach presented here
demonstrated an ability to sample across a reservoir, future
work will focus on more robust and optimal selection of the
sample selection parameters.

6.3. Discussion and Lessons Learned

6.3.1. Ebullition Identification and Quantification

The results above illustrate that both proposed ASV-based
greenhouse gas sampling methods are able to identify
methane hot spots and quantify methane release due to
ebullition. As ebullition is essentially a point-source emit-
ter, there can be extreme variability even at short spatial and
temporal scales (Grinham et al., 2011). Therefore, although
ebullition can often be seen in expected regions (e.g., left
image of Figure 13), a sample within that region does not
always guarantee the capture of gas bubbles sufficient to
achieve high rates. However, the systems proposed here
provide complementary sensing capabilities, which could
be combined to more efficiently measure the spatiotempo-
ral variability of both ebullition and diffusion over long
periods of time. This persistent monitoring is necessary on
these reservoirs in order to obtain estimates of total annual
methane emissions.

Whilst the experiments using the Inference ASVs
demonstrated the system for real-time sampling of green-
house gases across water bodies, the online component of
gas sampling system was not optimized for detecting lower
(and more common) flux rates of less than 1,000 mg m−2

d−1. Future work will look at adaptive chamber head-space
control as well as higher precision sensors to improve the
utility of the system for accurate quantification of the com-
bined diffusive and ebullitive flux of greenhouse gases.

6.3.2. Power Harvesting for Persistent Sampling

As described above, the detection and quantification of
methane ebullition requires long-term spatial and temporal
sampling. This in turn requires persistence. Even though the
Wivenhoe ASV is able to provide continuous and large area
coverage for methane detection, its power requirements
limits the endurance, even with solar power, to less than
24 hr. However, the daily averaged power consumption for
the Inference ASV for the experimental scenario described
in Figure 13 was estimated to be 15.9 W. This overall lower
power consumption gives the ASV an endurance of ap-
proximately 16 hr without any recharging and allows the
possibility of effectively having permanent operation on the
water storage using solar power harvesting.

In May 2015, a set of light loggers (Odyssey,
Christchurch, New Zealand) were placed around LND to
measure incoming solar radiation. Figure 14 shows an ex-
ample of the measured solar radiation across the daylight
hours at three sites: (1) the dam wall (northernmost point),
(2) against the Eastern bank midway down the storage, and
(3) at the Southern end of the Eastern distal arm. As can
be seen, due to shadowing from the steep-sided catchment
walls and tree cover, the amount of solar power available
varies with time of day and location.

An estimation of the energy harvesting potential for
each of the daily solar radiation cases shown in Figure 14. It
was assumed that the ASV would remain at each of the three
sites and was based on the current Inference ASV design with
the maximum 80 W of panels and 15% solar conversion ef-
ficiency. For each of the three sites, the estimated daily av-
eraged power harvest is 19.3, 10.1, and 15.9 W, respectively.
As the current daily average power requirements for 15 min
incubation sampling is 15.9 W, and given that only 34% of
the ASVs top deck is currently covered in solar panels, there
is potential to achieve long-term sampling endurance with
the addition of more solar panels. Current research is fo-
cused on developing multi-robot sampling strategies that
consider power harvesting potential to maintain persistent
observation in such light-varying conditions.

6.3.3. Lessons Learned

Throughout the experimental campaigns described above
and greater experience with these two ASV systems, a num-
ber of unexpected observations were made and conditions
encountered that have improved our designs and opera-
tions over time.

For example, during a weeklong power harvesting
and sampling experiment in May 2015, one of the Inference
ASVs suffered complete electronics failure due to a nearby
lightning strike during a storm event. Similar failures had
occurred on static sensor nodes in the past, with the fix now
being the addition of a lightning arrestor to the commu-
nications antenna. Even though the ASV was anchored at
the time, this also highlighted the need for safety systems
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Figure 14. Measured solar radiation across a day at three locations on Little Nerang Dam showing the effect of shadows due to
the steep-sided catchment.

that include an ability to automatically drop a restraining
anchor so that the vehicle does not drift downstream in the
event of motor or electronics failure, or if the ASV breaches
a geo-fence.

In terms of large-scale and persistent sampling, it is
important to be able to validate online measurements with
physical samples, which can be processed in a laboratory
using established methods. Even though the Inference ASV
has a vial system for capturing physical gas samples, its
carrying capacity was limited to six vials. When conducting
larger campaigns such as considered here, a larger number
of vials are needed and requires a modified design. For the
OMD-based system, the sensor itself was observed to cause
problems with its measurement at night. During nighttime
trials, the relatively intense sensor light of the OMD at-
tracted a large number of insects (e.g., moths), which cor-
rupted the measurements as they flew into the sensor field-
of-view. Therefore, a screen was needed and constructed
with gaps small enough to stop insects but not disrupt gas
flow through the sensor.

A particular issue on LND was the inconsistency of
GPS coverage and multipathing. This is due to the relatively
lower number of satellites over the Southern Hemisphere
and lack of augmentation systems, as well as the physi-
cal terrain characteristics (steep-sided catchment). As the
two ASV systems used GPS as a primary navigation sensor,
any significant drift in position could potentially cause the
ASVs to drift onto the sides of the reservoir or into regions
with difficult to see obstacles (e.g., water lilies at night).
This may also become a problem during station-keeping
when close to these regions. The Wivenhoe ASV trials was
observed to suffered more GPS signal degradation than the
Inference ASV trials; however, its laser-based obstacle de-

tection proved very effective in maintaining safe distances
from the bank. The Inference ASVs have less sophisticated
obstacle detection systems, and therefore, as general prac-
tice the georeferenced boundary is made more conservative
particularly in the Southern distal arms to keep away from
the sides in anticipation of degraded GPS.

7. CONCLUSIONS

This paper described and evaluates two robotic sampling
systems for conducting large-scale monitoring of a green-
house gas (methane) on complex inland waterways. The
multi-robot system, named Inference, consists of multiple
networked ASVs carrying a custom-developed greenhouse
gas sampling payload to provide discrete methane measure-
ments across a water reservoir. This multi-robot system was
compared to a complementary approach based on a single
larger ASV, named Wivenhoe, fitted with an OMD and im-
plementing an algorithm to detect and quantify methane
bubbles that are released to the atmosphere as it travels
over them. Field experiment results are shown that demon-
strate each ASV’s ability to navigate complex waterways
and detect, localize, and quantify regions of high methane
emissions to atmosphere. The results show that methane
ebullition is strongly spatially and temporally varying, re-
quiring persistent and distributed measurements. Future re-
search is focused on developing more sophisticated multi-
robot adaptive sampling algorithms to achieve persistent
monitoring and mapping of spatiotemporal processes while
considering energy, speed, and sampling constraints of the
vehicles. In addition, new sensors and algorithms for head-
space control of the GSS are being developed to improve

Journal of Field Robotics DOI 10.1002/rob



168 • Journal of Field Robotics—2017

its lower detection limit for sampling regions with low gas
flux rates.
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