Focus
Archaea

Grade Level
9-12 (Biology)

Focus Question
What is the role of Archaea in biological communities?

Learning Objectives
Students will be able to define “lipid biomarkers,” and explain what the presence of certain biomarkers signifies.

Students will be able to describe Archaea, and explain why these organisms are often considered to be unusual.

Students will be able to compare and contrast Archaea with bacteria and eukaryotes.

Students will be able to define methanogen and methanotroph, and explain the relevance of these terms to Archaea.

Students will be able to discuss the potential significance of Archaea in biological communities.

Materials
- Copies of “Ancient Bugs Worksheet,” one copy for each student or student group

Audiovisual Materials
- [Optional] Equipment for viewing online or downloaded video of vent communities

Teaching Time
One or two 45-minute class periods, plus time for student research

Seating Arrangement
Classroom style if students are working individually, or groups of two to four students

Maximum Number of Students
30

Key Words
- Hydrothermal field
- Archaea
- Methanogen
- Methanotroph
- Chemoautotroph

Background Information
In June, 2001, the Ocean Explorer Thunder Bay ECHO Expedition was searching for shipwrecks in the deep waters of the Thunder Bay National Marine Sanctuary and Underwater Preserve in Lake Huron. But the explorers discovered more than shipwrecks: dozens of underwater sinkholes in the limestone bedrock, some of which were several hundred meters across and 20 meters deep. The following year, an expedition to survey the sinkholes found that some of them were releasing fluids that produced a visible cloudy layer above the lake bottom, and the lake floor...
near some of the sinkholes was covered by conspicuous green, purple, white, and brown mats.

Preliminary studies of the mats have found that where water is shallow (≤ 1.0 m) the mats are composed of green algae. In deeper (about 18 m) waters, mats are formed by filamentous purple cyanobacteria. Mats near the deepest (93 m) sinkholes are white or brown, but their composition is presently unknown. The appearance of mats near the deepest sinkholes is very similar to mats observed in the vicinity of cold seeps and hydrothermal vents in the deep ocean, which are often formed by chemosynthetic bacteria. These bacteria are able to obtain energy from inorganic chemicals, and are a food source for a variety of other organisms that inhabit cold seep and vent communities. Biological communities whose primary energy source comes from chemosynthesis are distinctly different from more familiar biological communities in shallow water and on land where photosynthetic organisms convert the energy of sunlight to food that can be used by other species. Hydrothermal vent and cold seep communities are home to many species of organisms that have not been found anywhere else on Earth, and the existence of chemosynthetic communities in the deep ocean is one of the major scientific discoveries of the last 100 years.

Scientists hypothesize that the source of the fluids venting from the Lake Huron sinkholes is the Silurian-Devonian aquifer beneath the lake’s sediments. Aquifers are rocks and sediments that contain large amounts of water. Between 350 and 430 million years ago, during the Paleozoic era, shallow seas covered what is now the border between Canada and the United States between Minnesota and New York. Over thousands of years, sand, minerals, and sediments accumulated on the seafloor, and were gradually compressed to form sandstone, limestone and shale. About 1.8 million years ago, the Great Ice Age of the Pleistocene epoch began and continued until about 10,000 years ago. During this time, four major periods of glaciation occurred, separated by three interglacial periods. As the final glacial period came to a close, retreating glaciers along the U.S.-Canadian border revealed five huge lakes that we now know as the Laurentian Great Lakes. In the Great Lakes region, aquifers are found in deposits of sand and gravel left by glaciers, as well as in porous bedrocks (limestone and sandstone) that were formed much earlier in geologic time. Five major aquifers are recognized in this region: one near the land or lake floor surface (the surficial aquifer) and the others in deeper bedrock named for the geologic time periods when they were formed (the Cambrian-Ordovician, Silurian-Devonian, Mississippian, and Pennsylvanian aquifers). The bedrock that forms the Silurian-Devonian aquifer is primarily limestone and mineral formations from evaporating seawater. Both fresh and saline water are found in the Silurian-Devonian aquifer.

Sinkholes are common features where limestone is abundant, because limestone rocks are soluble in acid. Atmospheric carbon dioxide often dissolves in rainwater to form a weak acid (carbonic acid). Rainwater flowing over land surfaces may also pick up organic acids produced by decaying leaves and other once-living material. The resulting weak acid can slowly dissolve limestone rocks to form caves, springs, and sinkholes. Sinkholes on land are known recharge areas for the Silurian-Devonian aquifer (areas where water flows into the aquifer). But very little is known about the chemistry, geology, and biology of submerged sinkholes that may serve as vents for groundwater in the aquifer. Water samples collected near these sinkholes is very different from the surrounding lake, with much higher concentrations of sulfate, phosphorus, and particulate organic matter, as well as ten times more bacteria compared to nearby lake water. These observations suggest that submerged sinkholes may be biogeochemical “hot spots” inhabited by unusual and possibly unknown life forms. At the same time, water flow through submerged sinkholes
depends upon recharge from land. This means that sinkhole ecosystems are likely to be very sensitive to changes in rainfall patterns that may accompany climate change, as well as human alterations of these landscapes surrounding recharge areas. These factors make understanding sensitive sinkhole ecosystems an urgent necessity.

Like hydrothermal vent and cold seep communities in the deep ocean, the Thunder Bay deep sinkhole ecosystems are probably based on microorganisms that are able to use chemicals in venting fluids as an energy source for producing complex organic compounds that are used as food by other species (i.e., chemosynthesis). In this lesson, students will investigate what may be the strangest and most fascinating of these microbes: the Archaea, whose specialty is living in some of the most extreme environments on Earth.

Learning Procedure

 You may also want to review background information on lipid biomarkers and Archaea at http://exobiology.arc.nasa.gov/ssx/biomarkerlab/index.html and http://www.ucmp.berkeley.edu/archaea/archaea.html. The National Research Council publication, “Chemical Reference Materials: Setting the Standards for Ocean Science” also has a good discussion of lipid biomarkers (available as a free PDF download from: http://www.nap.edu/catalog/10476.html).

 If students do not have access to the internet, make copies of relevant materials referenced above.

2. Briefly introduce the Thunder Bay Sinkholes Expedition, highlighting the discovery of fluids emerging from sinkholes on the lake floor, and the variety of mats found in the vicinity of these sinkholes. Be sure students understand the concept of an aquifer, and that the mats are likely to be living organisms (algae and/or bacteria) that can serve as food for many other organisms. Point out that very little is known about the mats in Lake Huron or the biological communities they may support; but since their appearance is very similar to mats found in some deep ocean habitats, these habitats may provide clues for explorations of the Thunder Bay sinkholes.

 Briefly review hydrothermal vents and cold seeps, emphasizing distinctions between the characteristics and origin of vented fluids. Point out that these habitats are each associated with distinct living communities based on chemoautotrophic organisms. These organisms are able to thrive in conditions that would be lethal for most species and are also able to use substances in vent fluids as energy sources for the synthesis of essential compounds needed by living organisms.

 Contrast chemosynthesis with photosynthesis. The “big picture” of chemosynthesis and photosynthesis is that they are both processes that organisms use to obtain energy needed for life functions (reproducing, locomotion, synthesizing tissues, etc.). Energy in living organisms is stored and transported in the form of adenosine triphosphate (ATP) molecules. The energy used to produce ATP comes from reactions that transfer electrons from an electron donor molecule to an electron acceptor molecule. When these reactions take place, the molecule that loses an electron is said to be “oxidized” and the molecule that gains an electron is said to be “reduced.” One basic way to distinguish chemosynthesis from photosynthesis is the source of these electrons.

 In photosynthesis, light energy absorbed by pigments (e.g., chlorophyll) is transferred to electrons in the pigment molecule, and these electrons are transferred to other molecules in
a series of oxidation-reduction reactions. What happens to the chlorophyll molecule that loses its electron? In some cases, the electron is eventually recycled to the chlorophyll molecule; a process called “cyclic photophosphorylation.” In an alternative process called “noncyclic photophosphorylation” the electron is replaced by splitting another molecule through a process called “photolysis” (which means “light splitting”). The general equation for photosynthetic photolysis is

\[H_2X + 2 \text{photons} \rightarrow 2e^- + 2H^+ + X \]

“X” may be one of several elements. In the most familiar form of photosynthesis, “X” is oxygen, and the photosynthetic photolysis of water produces oxygen gas. In some purple bacteria, however, hydrogen sulfide is oxidized and particles of sulfur are produced. Note that while photosynthesis is often explained as noncyclic photophosphorylation and photolysis of water, some photosynthetic organisms use other pathways.

In chemosynthesis, electrons are also transferred between molecules to provide the energy needed for ATP production. The key difference is that light does not play a part in these reactions. A variety of electron donors are found in chemosynthetic systems; hydrogen sulfide is common in chemosynthetic organisms associated with hydrothermal vents, while methane is often the electron donor in cold seep communities (for a virtual tour of a cold seep community, visit http://www.bio.psu.edu/cold_seeps).

In both photosynthetic and chemosynthetic communities, a significant amount of the energy captured as ATP is used to synthesize organic molecules (note that highly simplified descriptions of photosynthesis imply that light energy is used to combine carbon dioxide and water to form glucose in a single reaction; but the reality is that many reaction sequences are involved).

3. This lesson may be undertaken as an individual student activity or by small groups of 2 - 4 students. Because the assignment requires significant student research and potentially novel concepts, the group approach provides an opportunity to distribute the work effort and for students to help each other master these concepts.

Provide each student or student group with a copy of “Ancient Bugs Worksheet” and say that their assignment is to prepare a brief report containing answers to questions on the worksheet. Encourage students to use diagrams where these would clarify their answers. You may also want to provide addresses to the resources referenced above as a starting point for student research.

4. Lead a discussion of students’ answers to worksheet questions. The following points should be included:

- Lipid biomarkers are lipid molecules that are found only in specific groups of organisms. Detection of these molecules signifies the presence of their corresponding organisms. Since lipids are major constituents of all living cells and include a wide range of biomolecules, there are many potential biomarkers. Since some of these molecules can remain almost intact for billions of years, lipid biomarkers can be used to detect the presence of various groups of organisms in the fossil record.

- Large quantities of ether-linked lipids and lesser quantities of hopanoids in extracts from crushed samples of carbonate chimneys suggest the presence of large numbers of Archaea and lesser numbers of prokaryotic organisms (bacteria).

- Archaea are microorganisms that superficially resemble bacteria, in that they are prokaryotic (they have no nucleus or internal cell membranes). But archaeal DNA is so profoundly different from other organisms that it merits
classifying Archaea as an entirely separate group. Life on Earth is now classified into three “domains:” Bacteria, Eukaryota, and Archaea.

- Archaea are often considered to be unusual because many of them are “extremophiles;” that is, they prefer environmental conditions that would be considered extreme for most organisms. These environments include deep sea hydrothermal vents where temperatures are well above 100 degrees Centigrade, extremely alkaline or acid waters, extremely saline waters, and even petroleum deposits deep underground. But Archaea are not confined to “extreme” environments; they are found in many other locations, including marshes, soils, and among the plankton of the open ocean. They are also found in the digestive tracts of many animals including humans (but are not known to cause human disease). Archaea are also unusual in that most archaeal DNA is completely different from that of bacteria and eukaryotes. Sometimes this is referred to as “junk” DNA; but the truth is we just don’t know what it does.

- Key structures of archaeal cells are chemically distinct from bacteria and eukaryotes. In particular, archaeal cell membranes are distinct in four ways.

The basic “building block” for cell membranes is the phospholipid. The “backbone” of a phospholipid is a molecule of glycerol:

With two side chains attached at one end and a phosphate group coupled to one of various polar groups at the other end:

Diagram 1:

![Diagram of phospholipid structure](image)

To simplify things, we can diagram this arrangement as:

![Simplified diagram](image)

When multiple phospholipids are put together to form a cell membrane, they form a double layer with the side chains sandwiched in the middle and the glycerol and phosphate components oriented toward either side of the membrane:

![Diagram of cell membrane](image)

This arrangement provides a chemical barrier around the cell and helps regulate substances that move in and out of the cell’s interior (note that cell membranes also contain proteins and carbohydrates; the phospholipids are just the foundation).

The first way that archaeal cell membranes differ from those of bacteria and eukaryotes is that the glycerol in archaeal phospholipids is a stereoisomer (mirror image) of the glycerol found in cell membranes of other domains. So instead of the arrangement shown in Diagram 1, which is typical of bacteria and eukaryotes, phospholipids of Archaea would be diagrammed as:
The second way that archaeal cell membranes are different is that the side chains in phospholipids of bacteria and eukaryotes are fatty acids, which are long unbranched chains, usually of 16 to 18 carbon atoms with a carboxyl group at one end:

```
H     O
|     |
|     |
H — C — O — P — O — polar group
|    ||
|    |
side chain — O — C — H
H
```

Phospholipid side chains in Archaea, however, are not fatty acids, but instead are 20-carbon chains built from isoprene:

```
CH₃
\|--
HC — C — CH₃
|     \--
CH₃
```

Isoprene molecules can be joined in many ways; they are used to make many synthetic products (including vitamin A, synthetic rubber, and steroid hormones) and also are the most common hydrocarbon in the human body.

The branching side chains of the isoprene “building block” are the third distinctive feature of archaeal cell membranes. These branches give archaeal cell membranes some interesting properties, including the ability to form carbon rings within the membrane structure. These rings are believed to provide structural stability to the membranes, since such rings are more common in species that tolerate high temperatures.

The fourth distinctive feature of archaeal cell membranes is that the side chains are joined to the glycerol portion of the phospholipid by an ether bond:

```
CH₃
\|--
H₂C — O — PO₄ + polar group
|    ||
|    |
- C — CH₃ — O — CH
|    |
- C — CH₃ — O — CH₃
|    ||
|    |
CH₃
```

while the fatty acid side chains in bacterial and eukaryotic phospholipids are joined with ester bonds:

```
O
|     |
|     |
OH — C — C — C — -- — C — C — H
|    ||
|    |
O — H — C — O — PO₄ + polar group
|    ||
|    |
H
```

This also gives the archaeal phospholipid different chemical properties than the membrane lipids of other organisms.

- Methanogens are organisms that produce methane from other chemicals.
- Methanotrophs are organisms that consume methane.
- Archaea can be methanogens as well as methanotrophs. While it is not clear that an single species of Archaea may produce methane as well as consume it, there is some evidence that this may happen.
- The abundance of Archaea at the Lost City Hydrothermal Field suggests that these organisms may be the primary chemoautotrophs in the associated biological community, and as such provide the primary source of nutrition for many other biological community. Just how they do this, and how much methane is produced by Archaea compared to that produced by inorganic processes are two of the many questions that remain to be answered by further exploration.
Focus: Archaea

The Bridge Connection
www.vims.edu/bridge/ – In the “Site Navigation” menu on the left, click “Ocean Science Topics,” then “Habitats,” then “Deep Sea” for links to resources about deep ocean ecosystems.

http://www2.vims.edu/bridge/noaa/ – The NOAA collection of education resources on a variety of science topics including oceanography, climate, coral reefs, fishes, and exotic species.

The “Me” Connection
Have students write a brief essay describing how Archaea might be personally important or significant.

Connections to Other Subjects
English/Language Arts, Chemistry, Earth Science

Assessment
Students reports prepared in response to worksheet questions provide opportunities for assessment.

Extensions
Visit http://oceanexplorer.noaa.gov/explorations/08thunderbay/welcome.html to keep up to date with the latest Thunder Bay Sinkholes Expedition discoveries, and to find out what researchers are learning about these ecosystems.

Multimedia Learning Objects
http://www.learningdemo.com/noaa/ Lesson 5 for interactive multimedia presentations and Learning Activities on Chemosynthesis and Hydrothermal Vent Life.

Other Relevant Lesson Plans from NOAA’s Ocean Exploration Program

Designing Tools for Ocean Exploration
http://oceanexplorer.noaa.gov/explorations/deepest01/background/education/dehslessons1.pdf
(14 pages, 80k) (from the 2001 Deep East Expedition)

Focus: Ocean Exploration

In this activity, students will understand the complexity of ocean exploration, learn about the technological applications and capabilities required for ocean exploration, discover the importance of teamwork in scientific research projects; and develop the abilities necessary for scientific inquiry.

Finding the Way
http://oceanexplorer.noaa.gov/explorations/deepest01/background/education/dehslessons4.pdf
(10 pages, 628k) (from the 2001 Deep East Expedition)

Focus: Underwater Navigation (Physical Science)

In this activity, students will describe how the compass, Global Positioning System (GPS), and sonar are used in underwater explorations; and students will understand how navigational tools can be used to determine positions and navigate in the underwater environment.

Living in Extreme Environments
http://oceanexplorer.noaa.gov/explorations/deepest01/background/education/dehslessons5.pdf
(13 pages 140k) (from the 2001 Deep East Expedition)

Focus: Biological Sampling Methods (Biological Science)

In this activity, students will be introduced to four methods commonly used by scientists to sample populations; learn how to gather, record, and analyze data from a scientific investigation, consider what organisms need in order to survive; and understand the concept of the interdependence of organisms.

Submersible Designer
http://oceanexplorer.noaa.gov/explorations/02galapagos/background/education/media/gal_gr9-12_l4.pdf
Focus: Deep Sea Submersibles

In this activity, students will understand that the physical features of water can be restrictive to movement, understand the importance of design in underwater vehicles by designing their own submersible, and understand how submersibles such as ALVIN and ABE, use energy, buoyancy, and gravity to enable them to move through the water.

Rock Eaters of the Gulf of Alaska
http://oceanexplorer.noaa.gov/explorations/02alaska/background/edu/media/rock_eaters9_12.pdf
(8 pages, 104k) (from the 2002 Exploring Alaska’s Seamounts Expedition)

Focus: Chemosynthetic microbes in basalt rocks (Chemistry, Biology, Earth Science)

In this activity, students will be able to compare and contrast the processes of photosynthesis and chemosynthesis, identify and describe sources of energy used by various organisms for chemosynthesis, and predict what chemosynthetic reactions might be possible in selected “extreme” environments.

Calling All Explorers. . . .
http://oceanexplorer.noaa.gov/explorations/02fire/background/education/media/ring_calling_explorers_9_12.pdf
(14 pages, 124k) (from the 2002 Submarine Ring of Fire Expedition)

Focus: Recent explorers of deep-sea environments and the relationship between science and history (Ocean Exploration)

In this activity, students will learn what it means to be an explorer, both modern and historic, recognize that not all exploration occurs on land, understand the importance of curiosity, exploration, and the ability to document what one studies, gain insight into the vastness of unexplored places in the deep sea, and gain appreciation of science mentors and role models.

Mystery of the Megaplume
http://oceanexplorer.noaa.gov/explorations/02fire/background/education/media/ring_mystery_9_12.pdf
(7 pages, 104k) (from the 2002 Submarine Ring of Fire Expedition)

Focus: Hydrothermal vent chemistry (Chemistry, Earth Science, Physical Science)

In this activity, students will be able to describe hydrothermal vents and characterize vent plumes in terms of physical and chemical properties, describe tow-yo operations and how data from these operations can provide clues to the location of hydrothermal vents, and interpret temperature anomaly data to recognize a probable plume from a hydrothermal vent.

Candy Chemosynthesis
http://oceanexplorer.noaa.gov/explorations/02fire/background/education/media/ring_candy_chemo_9_12.pdf
(10 pages, 208k) (from the 2002 Submarine Ring of Fire Expedition)

Focus: Biochemistry of hydrothermal vents (Biology, Chemistry)

Students will differentiate between requirements for life in extreme environments and other environments and will use models to create a visual image of chemicals involved in autotrophic nutrition.

From the Gulf of Mexico to the Moons of Jupiter
http://oceanexplorer.noaa.gov/explorations/02mexico/background/edu/media/gom_moons.pdf
(6 pages, 46468k) (from the 2002 Gulf of Mexico Expedition)

Focus: Adaptations to unique or “extreme” environments (Earth Science)
In this activity, students will be able to explain the process of chemosynthesis, explain the relevance of chemosynthesis to biological communities in the vicinity of cold seeps, and will be able to compare physical conditions in deep-sea “extreme” environments to conditions thought to exist on selected moons of Jupiter. Students will also discuss the relevance of chemosynthetic processes in cold seep communities to the possibility of life on other planetary bodies.

Biochemistry Detectives
http://oceanexplorer.noaa.gov/explorations/02mexico/background/edu/media/gom_biochem.pdf
(8 pages, 480k) (from the 2002 Gulf of Mexico Expedition)

Focus: Biochemical clues to energy-obtaining strategies (Chemistry)

In this activity, students will be able to explain the process of chemosynthesis, explain the relevance of chemosynthesis to biological communities in the vicinity of cold seeps, and describe three energy-obtaining strategies used by organisms in cold-seep communities. Students will also be able to interpret analyses of enzyme activity and 13C isotope values to draw inferences about energy-obtaining strategies used by organisms in cold-seep communities.

This Old Tubeworm
http://oceanexplorer.noaa.gov/explorations/02mexico/background/edu/media/gom_oldtube.pdf
(10 pages, 484k) (from the 2002 Gulf of Mexico Expedition)

Focus: Growth rate and age of species in cold-seep communities (Life Science)

In this activity, students will be able to explain the process of chemosynthesis, explain the relevance of chemosynthesis to biological communities in the vicinity of cold seeps, and construct a graphic interpretation of age-specific growth, given data on incremental growth rates of different-sized individuals of the same species. Students will also be able to estimate the age of an individual of a specific size, given information on age-specific growth in individuals of the same species.

Where Did They Come From?
http://oceanexplorer.noaa.gov/explorations/05galapagos/background/edu/media/05galapagos_biogeography.pdf
(7 pages, 196k) (from the 2005 GalAPAGoS: Where Ridge Meets Hotspot Expedition)

Focus: Species variation in hydrothermal vent communities (Life Science)

In this activity, students will define and describe biogeographic provinces of hydrothermal vent communities, identify and discuss processes contributing to isolation and species exchange between hydrothermal vent communities, and discuss characteristics which may contribute to the survival of species inhabiting hydrothermal vent communities.

The Benthic Drugstore
http://oceanexplorer.noaa.gov/explorations/03bio/background/edu/media/Meds_Drugstore.pdf
(4 pages, 360k) (from the 2003 Medicines from the Deep Sea Expedition)

Focus: Pharmacologically-active chemicals derived from marine invertebrates (Life Science)

In this activity, students will be able to identify at least three pharmacologically-active chemicals derived from marine invertebrates, describe the disease-fighting action of at least three pharmacologically-active chemicals derived from marine invertebrates, and infer why sessile marine invertebrates appear to be promising sources of new drugs.
Focus: Archaea

Watch the Screen!
http://oceanexplorer.noaa.gov/explorations/03bio/background/edu/media/Meds_WatchScreen.pdf
(5 pages, 428k) (from the 2003 Medicines from the Deep Sea Expedition)

Focus: Screening natural products for biological activity (Life Science)

In this activity, students will be able to explain and carry out a simple process for screening natural products for biological activity, and will be able to infer why organisms such as sessile marine invertebrates appear to be promising sources of new drugs.

C.S.I. on the Deep Reef (Chemotrophic Species Investigations, That Is)
http://oceanexplorer.noaa.gov/explorations/03mex/background/edu/media/mexdh_csi.pdf
(6 pages, 444k) (from the 2003 Gulf of Mexico Deep Sea Habitats Expedition)

Focus: Chemotrophic organisms (Life Science/Chemistry)

In this activity, students will describe at least three chemotrophic symbioses known from deep-sea habitats and will identify and explain at least three indicators of chemotropic nutrition.

My Wet Robot
http://oceanexplorer.noaa.gov/explorations/06greece/background/edu/media/wet_robot.pdf
(7 pages, 260 kb) (from the PHAEDRA 2006 Expedition)

Focus: Underwater Robotic Vehicles

In this activity, students will be able to discuss the advantages and disadvantages of using underwater robots in scientific explorations, identify key design requirements for a robotic vehicle that is capable of carrying out specific exploration tasks, describe practical approaches to meet identified design requirements, and (optionally) construct a robotic vehicle capable of carrying out an assigned task.

The Roving Robotic Chemist
http://oceanexplorer.noaa.gov/explorations/06greece/background/edu/media/robot_chemist.pdf
(14 pages, 440 kb) (from the PHAEDRA 2006 Expedition)

Focus: Mass Spectrometry (Chemistry)

In this lesson, students will be able to explain the basic principles underlying mass spectrometry, discuss the advantages of in-situ mass spectrometry, explain the concept of dynamic re-tasking as it applies to an autonomous underwater vehicle, and develop and justify a sampling strategy that could be incorporated into a program to guide an AUV searching for chemical clues to specific geologic features.

Where’s My ‘Bot?
http://oceanexplorer.noaa.gov/explorations/08bonaire/background/edu/media/wheresbot.pdf
(17 pages, 492kb) (from the Bonaire 2008: Exploring Coral Reef Sustainability with New Technologies Expedition)

Focus: Marine Navigation (Earth Science/Mathematics)

In this activity, students will estimate geographic position based on speed and direction of travel, and integrate these calculations with GPS data to estimate the set and drift of currents.

Outta Gas (from the 2007: Exploring the Inner Space of the Celebes Sea Expedition)
http://oceanexplorer.noaa.gov/explorations/07philippines/background/edu/media/outtagas.pdf
(10 pages, 300 kb)

Focus: Gas Laws (Chemistry/Physics)
In this activity, students will define Boyle’s Law, Charles’ Law, Gay-Lussac’s Law, Henry’s Law, and Dalton’s Law and will be able to solve practical problems related to SCUBA diving.

OTHER RESOURCES

The Web links below are provided for informational purposes only. Links outside of Ocean Explorer have been checked at the time of this page’s publication, but the linking sites may become outdated or non-operational over time.

http://oceanexplorer.noaa.gov/explorations/08thunderbay/welcome.html – Follow the Thunder Bay Sinkholes 2008 Expedition daily as documentaries and discoveries are posted each day for your classroom use

http://celebrating200years.noaa.gov/edufun/book/welcome.html#book – A free printable book for home and school use introduced in 2004 to celebrate the 200th anniversary of NOAA; nearly 200 pages of lessons focusing on the exploration, understanding, and protection of Earth as a whole system

http://gvsu.edu/wri/envbio/biddanda/sinkhole.htm – 1 minute ROV video clip of conspicuous white benthic mats interspersed with the brownish mats characterizing the lake floor in the vicinity of the sinkhole, and a dark cloudy nepheloid-like plume layer prevailing just over the site of submarine groundwater seepage

ftp://ftp.glerl.noaa.gov/eos/Purple_Mats_40_sec.wmv – Underwater video of the purple benthic mats from the Middle Island Sinkhole

NATIONAL SCIENCE EDUCATION STANDARDS

Content Standard A: Science As Inquiry

- Abilities necessary to do scientific inquiry
- Understanding about scientific inquiry

Content Standard B: Physical Science

- Transfer of energy

Content Standard C: Life Science

- The cell
- Interdependence of organisms
- Matter, energy, and organization in living systems

Content Standard E: Science and Technology

- Understandings about science and technology
Content Standard F: Science in Personal and Social Perspectives
- Natural resources
- Science and technology in local, national, and global challenges

Content Standard G: History and Nature of Science
- Nature of scientific knowledge

Ocean Literacy Essential Principles and Fundamental Concepts

Essential Principle 3.
The ocean is a major influence on weather and climate.
Fundamental Concept e. The ocean dominates the Earth’s carbon cycle. Half the primary productivity on Earth takes place in the sunlit layers of the ocean and the ocean absorbs roughly half of all carbon dioxide added to the atmosphere.
Fundamental Concept f. The ocean has had, and will continue to have, a significant influence on climate change by absorbing, storing, and moving heat, carbon and water.

Essential Principle 4.
The ocean makes Earth habitable.
Fundamental Concept a. Most of the oxygen in the atmosphere originally came from the activities of photosynthetic organisms in the ocean.
Fundamental Concept b. The first life is thought to have started in the ocean. The earliest evidence of life is found in the ocean.

Essential Principle 5.
The ocean supports a great diversity of life and ecosystems.
Fundamental Concept b. Most life in the ocean exists as microbes. Microbes are the most important primary producers in the ocean. Not only are they the most abundant life form in the ocean, they have extremely fast growth rates and life cycles.
Fundamental Concept d. Ocean biology provides many unique examples of life cycles, adaptations and important relationships among organisms (such as symbiosis, predator-prey dynamics and energy transfer) that do not occur on land.

Fundamental Concept f. Ocean habitats are defined by environmental factors. Due to interactions of abiotic factors such as salinity, temperature, oxygen, pH, light, nutrients, pressure, substrate and circulation, ocean life is not evenly distributed temporally or spatially, i.e., it is “patchy.” Some regions of the ocean support more diverse and abundant life than anywhere on Earth, while much of the ocean is considered a desert.
Fundamental Concept g. There are deep ocean ecosystems that are independent of energy from sunlight and photosynthetic organisms. Hydrothermal vents, submarine hot springs, and methane cold seeps rely only on chemical energy and chemosynthetic organisms to support life.

Essential Principle 7.
The ocean is largely unexplored.
Fundamental Concept a. The ocean is the last and largest unexplored place on Earth—less than 5% of it has been explored. This is the great frontier for the next generation’s explorers and researchers, where they will find great opportunities for inquiry and investigation.
Fundamental Concept b. Understanding the ocean is more than a matter of curiosity. Exploration, inquiry and study are required to better understand ocean systems and processes.
Fundamental Concept d. New technologies, sensors and tools are expanding our ability to explore the ocean. Ocean scientists are relying more and more on satellites, drifters, buoys, subsea observatories and unmanned submersibles.
Fundamental Concept f. Ocean exploration is truly interdisciplinary. It requires close collaboration among biologists, chemists, climatologists, computer programmers, engineers, geologists, meteorologists, and physicists, and new ways of thinking.

Send Us Your Feedback
We value your feedback on this lesson. Please send your comments to:
oceanexeducation@noaa.gov
For More Information
Paula Keener-Chavis, Director, Education Programs
NOAA Ocean Exploration Program
Hollings Marine Laboratory
331 Fort Johnson Road, Charleston SC 29412
843.762.8818
843.762.8737 (fax)
paula.keener-chavis@noaa.gov

Acknowledgements
This lesson plan was produced by Mel Goodwin, PhD, The Harmony Project, Charleston, SC
for the National Oceanic and Atmospheric Administration. If reproducing this lesson, please
cite NOAA as the source, and provide the following URL: http://oceanexplorer.noaa.gov
Student Handout

Ancient Bugs Worksheet

1. What are lipid biomarkers?

2. Expeditions to the Lost City Hydrothermal Field (the site of a 2005 Ocean Explorer Expedition) found large quantities of ether-linked lipids and lesser quantities of hopanoids in extracts from crushed samples of carbonate chimneys. What do these observations suggest (see Table 1)?

3. What are Archaea?

4. Why are Archaea often considered to be unusual?

5. How are Archaea different from bacteria and eukaryotes?

6. What are methanogens?

7. What are methanotrophs?

8. Are Archaea methanogens or methanotrophs?

9. What might be the potential significance if large numbers of Archaea were found near the deep Thunder Bay sinkholes?
Student Handout
Ancient Bugs Worksheet
Table 1
Examples of Microbial Biomarkers and Potential Source Organisms
(source: Committee on Reference Materials for Ocean Science, National Research Council; see "Resources")

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Potential Source Organism(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetrapyrroles</td>
<td></td>
</tr>
<tr>
<td>Divinyl chlorophylls a and b</td>
<td>Prochlorococcus spp.</td>
</tr>
<tr>
<td>Monovinyl chlorophyll b</td>
<td>Chlorophytes, prasinophytes</td>
</tr>
<tr>
<td>Chlorophylls c₁, c₂ and c₃</td>
<td>Chromophyte microalgae</td>
</tr>
<tr>
<td>Bacteriochlorophyll a</td>
<td>Anoxygenic photosynthetic bacteria</td>
</tr>
<tr>
<td>Carotenoids</td>
<td></td>
</tr>
<tr>
<td>Peridinin</td>
<td>Dinoflagellates</td>
</tr>
<tr>
<td>Fucoxanthin</td>
<td>Diatoms</td>
</tr>
<tr>
<td>19′-butanoyloxyfucoxanthin</td>
<td>Pelagophytes</td>
</tr>
<tr>
<td>19′-hexanoyloxyfucoxanthin</td>
<td>Haptophytes</td>
</tr>
<tr>
<td>Alloxanthin</td>
<td>Cryptophytes</td>
</tr>
<tr>
<td>Prasinoxanthin</td>
<td>Prasinophytes</td>
</tr>
<tr>
<td>Lutein</td>
<td>Chlorophytes</td>
</tr>
<tr>
<td>Zeaxanthin</td>
<td>Cyanobacteria, chlorophytes</td>
</tr>
<tr>
<td>C₂₀ isoprenoids</td>
<td>Photoautotrophs</td>
</tr>
<tr>
<td>Phytol</td>
<td>Proteobacteria</td>
</tr>
<tr>
<td>All trans-retinal</td>
<td></td>
</tr>
<tr>
<td>Ether-linked lipids</td>
<td>Archaea</td>
</tr>
<tr>
<td>Sterols</td>
<td></td>
</tr>
<tr>
<td>Dinosterol</td>
<td>Dinoflagellates</td>
</tr>
<tr>
<td>24-methylcholesta-5,22E-dien-3B₁-twol</td>
<td>Diatoms, Haptophytes</td>
</tr>
<tr>
<td>24-methylcholesta-5,24(28)-dien-3</td>
<td>Diatoms</td>
</tr>
<tr>
<td>24-methyl cholest-5-en-3B₁-twol</td>
<td>Chlorophytes</td>
</tr>
<tr>
<td>Hopanoids</td>
<td></td>
</tr>
<tr>
<td>Diploptene, hopanoic acids</td>
<td>Prokaryotes, including cyanobacteria</td>
</tr>
<tr>
<td>Lipopolysaccharides (LPS)</td>
<td>Gram-negative bacteria</td>
</tr>
<tr>
<td>Polar lipid fatty acids</td>
<td></td>
</tr>
<tr>
<td>Branched-chain C₁₅ and C₁₇ acids</td>
<td>Bacteria, especially Bacillus spp.</td>
</tr>
<tr>
<td>Peptidoglycan</td>
<td></td>
</tr>
<tr>
<td>D-amino acids</td>
<td>Bacteria, mainly gram-positive strains</td>
</tr>
</tbody>
</table>