THEME: WHY DO WE EXPLORE Key Topic Inquiry: Ocean Exploration

NOAA Ship Okeanos Explorer: America's Ship for Ocean Exploration. Image credit: NOAA. For more information, see the following Web site: http://oceanexplorer.noaa.gov/okeanos/welcome. html

Journey to the Unknown (adapted from the 2002 Galapagos Rift Expedition)

The NOAA Ship Okeanos Explorer

An essential component of the NOAA Office of Ocean Exploration and Research mission is to enhance understanding of science, technology, engineering, and mathematics used in exploring the ocean, and build interest in careers that support ocean-related work. To help fulfill this mission, the Okeanos Explorer Education Materials Collection is being developed to encourage educators and students to become personally involved with the voyages and discoveries of the Okeanos Explorer-America's first Federal ship dedicated to Ocean Exploration. Leader's Guides for Classroom Explorers focus on three themes: "Why Do We Explore?" (reasons for ocean exploration), "How Do We Explore?" (exploration methods), and "What Do We Expect to Find?" (recent discoveries that give us clues about what we may find in Earth's largely unknown ocean). Each Leader's Guide provides background information, links to resources, and an overview of recommended lesson plans on the Ocean Explorer Web site (http://oceanexplorer.noaa.gov). An Initial Inquiry Lesson for each of the three themes leads student inquiries that provide an overview of key topics. A series of lessons for each theme guides student investigations that explore these topics in greater depth. In the future additional guides will be added to the Education Materials Collection to support the involvement of citizen scientists.

This lesson guides student inquiry into the key topic of Ocean Exploration within the "Why Do We Explore?" theme.

Focus

Ocean Exploration

Grade Level

5-6 (Life Science/Earth Science)

Focus Question

What information can you use to determine where you are in an unknown area?

Learning Objectives

- Students will experience the excitement of discovery and problem-solving to learn what organisms could live in extreme environments in the deep ocean.
- Students will understand the importance of ocean exploration.

Materials

- NOAA and Woods Hole Oceanographic Institute photos of deep sea animals (http://oceanexplorer.noaa.gov/ gallery/gallery.html and http://shiva.whoi.edu/ims/login. jsp;jsessionid=3bg7feo4j35 respectively). Other useful deepsea animal pictures can be found at http://extremescience. com/deepcreat.htm, http://tqjunior.thinkquest.org/4106, and http://www.ocean.udel.edu/deepsea/gallery/gallery. html
- Octocoral photos (http://oceanexplorer.noaa.gov/gallery/ livingocean/livingocean_coral.html)
- One or more photos of remotely operated vehicles (http:// oceanexplorer.noaa.gov/technology/subs/rov/rov.html) for each student group
- One pint Ziploc bag of sand, one for each student group
- One pint Ziploc bag of mud, one for each student group
- (Optional) Hands-On Activity Guides: *How to Posterize Images*, and *How to Construct an Ultraviolet LED Poster Illuminator*, one for each student or student group
- (Optional) *Student Data Sheet* 1 per student for use with Extension #3

Audiovisual Materials

• None

Teaching Time

Two 45-minute class periods

Seating Arrangement

Groups of three or four students

Maximum Number of Students

30

Key Words and Concepts

Explore Technology Submersible Biodiversity

Okeanos Explorer Vital Statistics:

Commissioned: August 13, 2008; Seattle, Washington Length: 224 feet Breadth: 43 feet Draft: 15 feet Displacement: 2,298.3 metric tons Berthing: 46, including crew and mission support Operations: Ship crewed by NOAA Commissioned Officer Corps and civilians through NOAA's Office of Marine and Aviation Operations (OMAO); Mission equipment operated by NOAA's Ocean Exploration and

For more information, visit http:// oceanexplorer.noaa.gov/okeanos/ welcome.html.

Research Program

Okeanos Explorer's Control Room is the exploration heart of the ship, serving a number of missions including processing of multibeam sonar for mapping, controlling video transmitted off the ship, and coordinating the interaction between those afloat and ashore. When ROVs are deployed, they are controlled here by a navigator, pilot and co-pilot. Images from various cameras on the ship, and on deployed ROVs, can be brought up on the large screens. Image credit: NOAA.

Okeanos Explorer's remotely-operated vehicle (ROV) system consists of a bell-shaped camera sled, a scienceclass ROV and a small xBot, all of which can operate as deep as 6000 meters. Image credit: NOAA.

Background Information

NOTE: Explanations and procedures in this lesson are written at a level appropriate to professional educators. In presenting and discussing this material with students, educators may need to adapt the language and instructional approach to styles that are best suited to specific student groups.

"We know more about the dead seas of Mars than our own ocean."

– Jean Michel Cousteau

In fact, our current estimation is that 95% of Earth's ocean is unexplored. At first, this may be hard to believe, particularly if we look at recent satellite maps of Earth's ocean floor. These maps seem to show seafloor features in considerable detail. But satellites can't see below the ocean's surface. The "images" of these features are estimates based on the height of the ocean's surface, which varies because the pull of gravity is affected by seafloor features. And if we consider the scale of these maps, it is easy to see how some things might be missed. To show our planet's entire ocean, a typical wall map has a scale of about 1 cm = 300 km. At that scale, the dot made by a 0.5 mm pencil represents an area of over 60 square miles! The fact is, most of the ocean floor has never been seen by human eyes.

On August 13, 2008, the NOAA Ship *Okeanos Explorer* was commissioned as "America's Ship for Ocean Exploration;" the only U.S. ship whose sole assignment is to systematically explore our largely unknown ocean for the purposes of discovery and the advancement of knowledge. To fulfill its mission, the *Okeanos Explorer* has specialized capabilities for finding new and unusual features in unexplored parts of Earth's ocean, and for gathering key information that will support more detailed investigations by subsequent expeditions. These capabilities include:

- Underwater Mapping using multibeam sonar capable of producing high-resolution maps of the seafloor to depths of 6000 meters;
- Underwater robots (remotely operated vehicles) that can investigate anomalies as deep as 6,000 meters; and
- Advanced broadband satellite communication.

Capability for broadband telecommunications provides the foundation for telepresence: technologies that allow people to observe and interact with events at a remote location. This allows live images to be transmitted from the seafloor to scientists ashore, classrooms, newsrooms and living rooms, and opens new educational opportunities, which are a major part of *Okeanos*

Explorer's mission for advancement of knowledge. In addition, telepresence makes it possible for shipboard equipment to be controlled by scientists in shore-based Exploration Command Centers. In this way, scientific expertise can be brought to the exploration team as soon as discoveries are made, and at a fraction of the cost of traditional oceanographic expeditions.

Learning Procedure

- 1. To prepare for this lesson:
- If you have not previously done so, review introductory information on the NOAA Ship *Okeanos Explorer* at http://oceanexplorer.noaa.gov/okeanos/welcome.html. You may also want to consider having students complete some or all of the Initial Inquiry Lesson, *To Boldly Go...* (http://oceanexplorer.noaa.gov/okeanos/edu/leadersguide/media/09toboldlygo.pdf).
- 2. If you have not previously done so, briefly introduce the NOAA Ship *Okeanos Explorer*, emphasizing that this is the first Federal vessel specifically dedicated to exploring Earth's largely unknown ocean. Include a short discussion of reasons that ocean exploration is important.
- 3. Tell students to close their eyes, and say that they are part of an expedition to an unexplored region of Earth's ocean.
- 4. Read the following imaginary series of events that might take place in the *Okeanos Explorer's* Control Room or in an Exploration Command Center, but do not mention either of these locations at this point:
 - a. You are a scientist on a mission. You are seated in a control room with several other scientists and technicians. Several large video monitors are on the wall in front of you.
 - b. One of the monitors shows an image of a sun-lit ocean, just a few feet above the surface. A technician sitting in a chair next to you says "Here we go," as she moves a large joystick slightly. As you watch, the sea surface seems to rise up. There is a sudden splash in front of the lens and the monitor now shows rays of sunlight shining through the blue ocean water.
 - c. Every minute or so, the pilot with the joystick calls out a number. As the numbers increase, the scene on the monitor grows steadily darker. By the time the pilot says "Fifty meters," the monitor is almost completely black.
 - d. The pilot touches a switch and beams of light shine out into the darkness. She continues to call out larger and

larger numbers. Strange animals appear in the path of the lights, then quickly disappear. Time passes, but no one wants to look away from the monitor because they might miss something amazing. The scientists keep up a running conversation about what they see, and their words are recorded along with the video images.

- e. Suddenly the scene on the monitor changes as the pilot says "Two thousand meters." You see a horizontal surface that must be the ocean bottom. Large branching objects seem to be growing out of the sea floor. You ask the pilot to collect a few samples of these. A mechanical claw attached to a metal arm appears on the monitor, tightens onto one of the branching objects, and then pulls the object back toward the video camera. The claw and the sample disappear, but the pilot says, "OK, it's in the basket."
- f. Another scientist notices things moving in the mud, and asks the pilot to collect more samples. As the camera moves around, you can see that the ocean floor is covered with animals, tracks, and holes.
- g. After collecting more samples, the pilot says, "Let's watch for a few minutes with the lights off." The monitor is completely black for what seems like a long time, but then a glowing object flashes across the screen. "WHAT WAS THAT???" There is another flash of light, and it almost seems to be following the first object. Several scientists are busily speaking into their microphones to record every detail of something they have never seen before.
- h. Finally, the pilot begins calling out numbers again, but this time each number is smaller than the one before. Everyone has been in the control room for hours, but they can't wait to begin analyzing the samples from part of the ocean that has never been seen before.
- 5. Have students open their eyes and have a discussion about where they think that they have been and why. If necessary, stimulate the discussion by asking some or all of the following:
 - Were you excited?
 - Where were you?
 - Where did the video images on the monitor come from?
 - Why was it dark?
 - What were the glowing objects?
 - What were the branching objects?
 - What were the things moving in the mud?
 - Do you think that scientists get excited when they are making discoveries?

6. Tell students that you are going to provide them with some materials to help them try to determine where they went on their imaginary voyage. Give each table copies of several photos of deep sea creatures, a picture of a remotely operated vehicle, a Ziploc bag full of sand and one of mud. (Do not explain the materials yet). Tell the students to think about the things that they saw and heard, including the pilot's words. Give them 10-15 minutes to explore, discuss, and ask questions.

- 7. As a class, have students discuss their ideas, answering questions, and challenging ideas. Then tell them that they were on an imaginary mission in a control room for the NOAA Ship Okeanos Explorer. Explain that one of the important capabilities of the ship is telepresence, which allows people to observe and interact with events at a remote location. Telepresence technologies allow live images to be transmitted from the seafloor to scientists ashore, classrooms, newsrooms and living rooms, and are a major part of the Okeanos Explorer's mission for advancement of knowledge. Telepresence also makes it possible for shipboard equipment to be controlled by scientists in shore-based Exploration Command Centers. In this way, scientific expertise can be brought to the exploration team as soon as discoveries are made, and at a fraction of the cost of traditional oceanographic expeditions. So, their imaginary mission might have taken place aboard the Okeanos Explorer, but it could also have happened thousands of miles away in an **Exploration Command Center.**
- 8. (optional) Posterize images of deep sea creatures, and construct an ultraviolet LED poster illuminator (see handouts).

The BRIDGE Connection

www.vims.edu/bridge/ – Scroll over "Lesson Plans," then "5th Grade" for resources and activities related to ocean exploration.

The "Me" Connection

Have a discussion of products from the sea, and the potential to discover new species, new medicines, and new ways of transferring energy. (Use www.ohia.com and www. coralreefalliance.org/aboutcoralreefs Web sites from Resources section.)

Connections to Other Subjects

- Art

Biology, English/Language Arts, Mathematics

Assessment

Have students write a log entry with illustrations about what was seen on the deep sea dive. Ask them to include the newly-learned vocabulary terms in their entry.

Extensions

- 1. Follow events aboard the *Okeanos Explorer* at http:// oceanexplorer.noaa.gov/okeanos/welcome.html.
- 2. Research the Internet to find more species that live at depths of 2,000 meters and beyond. Have students make posters using the information about particular animals and share the posters with classmates.
- 3. Conduct a simulated deep ocean bottom exploration on the playground or other outside location. Have students pretend that they are exploring it for the first time. Ecological surveys often make use of frames called "quadrats" that enclose a known area. Quadrats may be made of wood, plastic, or other materials, and are usually square (although they can be any shape as long as the enclosed area is known). Several quadrats are spaced over the area to be surveyed; the exact number of quadrats usually depends upon the time and personnel available to complete the survey. Students can make quadrats with meter sticks taped together to form squares, or hula hoops to form circular quadrats. Have students draw their entire quadrat and record observations of both living and nonliving components on the *Student Data Sheet*.

Multimedia Discovery Missions

http://oceanexplorer.noaa.gov/edu/learning/welcome.html Click on the links to Lessons 3, 6, 11, and 12 for interactive multimedia presentations and Learning Activities on Deep-Sea Corals, Deep-Sea Benthos, Energy from the Oceans, and Food, Water, and Medicine from the Sea.

Other Relevant Lesson Plans from NOAA's Ocean Exploration Program

(All of the following Lesson Plans are targeted toward grades 5-6)
A Риссе ог Саке
(7 pages; 282kb PDF) (from the Cayman Islands Twilight Zone 2007 Expedition)
http://oceanexplorer.noaa.gov/explorations/
07twilightzone/background/edu/media/cake.pdf

Focus: Spatial heterogeneity in deep-water coral communities (Life Science)

In this activity, students will be able to explain what a habitat is, describe at least three functions or benefits that habitats provide, and describe some habitats that are typical of deepwater hard bottom communities. Students will also be able to explain how organisms, such as deep-water corals and sponges, add to the variety of habitats in areas such as the Cayman Islands.

DEEP GARDENS

(11 pages; 331kb PDF) (from the Cayman Islands Twilight Zone 2007 Expedition) http://oceanexplorer.noaa.gov/explorations/ 07twilightzone/background/edu/media/deepgardens.pdf

Focus: Comparison of deep-sea and shallow-water tropical coral communities (Life Science)

In this activity, students will compare and contrast deep-sea coral communities with their shallow-water counterparts, describe three types of coral associated with deep-sea coral communities, and explain three benefits associated with deep-sea coral communities. Students will explain why many scientists are concerned about the future of deep-sea coral communities.

LET'S MAKE A TUBEWORM!

(6 pages, 464k) (from the 2002 Gulf of Mexico Expedition) http://oceanexplorer.noaa.gov/explorations/02mexico/ background/ edu/media/gom_tube_gr56.pdf

Focus: Symbiotic relationships in cold-seep communities (Life Science)

In this activity, students will be able to describe the process of chemosynthesis in general terms, contrast chemosynthesis and photosynthesis, describe major features of cold-seep communities, and list at least five organisms typical of these communities. Students will also be able to define symbiosis, describe two examples of symbiosis in cold-seep communities, describe the anatomy of vestimentiferans, and explain how these organisms obtain their food.

CHEMISTS WITH NO BACKBONES

(4 pages, 356k) (from the 2003 Deep Sea Medicines Expedition) http://oceanexplorer.noaa.gov/explorations/03bio/background/edu/media/Meds_ChemNoBackbones.pdf

Focus: Benthic invertebrates that produce pharmacologicallyactive substances (Life Science)

In this activity, students will be able to identify at least three groups of benthic invertebrates that are known to produce pharmacologically-active compounds and will describe why pharmacologically-active compounds derived from benthic invertebrates may be important in treating human diseases. Students will also be able to infer why sessile marine invertebrates appear to be promising sources of new drugs.

KEEP AWAY

(9 pages, 276k) (from the 2006 Expedition to the Deep Slope) http://oceanexplorer.noaa.gov/explorations/06mexico/ background/edu/GOM%2006%20KeepAway.pdf

Focus: Effects of pollution on diversity in benthic communities (Life Science)

Students will discuss the meaning of biological diversity and compare and contrast the concepts of variety and relative abundance as they relate to biological diversity. Given information on the number of individuals, number of species, and biological diversity at a series of sites, students will make inferences about the possible effects of oil drilling operations on benthic communities.

WHAT'S IN THAT CAKE?

(9 pages, 276k) (from the 2006 Expedition to the Deep Slope) http://oceanexplorer.noaa.gov/explorations/06mexico/ background/edu/ GOM%2006%20Cake.pdf

Focus: Exploration of deep-sea habitats

Students will be able to explain what a habitat is, describe at least three functions or benefits that habitats provide, and describe some habitats that are typical of the Gulf of Mexico. Students will also be able to describe and discuss at least three difficulties involved in studying deep-sea habitats and describe and explain at least three techniques scientists use to sample habitats, such as those found in the Gulf of Mexico.

Other Resources

The Web links below are provided for informational purposes only. Links outside of Ocean Explorer have been checked at the time of this page's publication, but the linking sites may become outdated or non-operational over time.

http://oceanexplorer.noaa.gov – Web site for NOAA's Ocean Exploration Program

http://celebrating200years.noaa.gov/edufun/book/welcome.

html#book – A free printable book for home and school use introduced in 2004 to celebrate the 200th anniversary of NOAA; nearly 200 pages of lessons focusing on the exploration, understanding, and protection of Earth as a whole system

http://oceanexplorer.noaa.gov/history/history.html -

Comprehensive look at NOAA's 200-year history of ocean exploration

http://oceanexplorer.noaa.gov/history/quotes/explore/explore. html – Quotations about "Why Explore?"

http://www.divediscover.whoi.edu/vents/index.html – "Dive and Discover: Hydrothermal Vents;" from Woods Hole Oceanographic Institution

www.oceanexplorer.noaa.gov/explorations/deepeast01/ deepeast01.html – Web site for the Ocean Explorer 2001 Deep East Expedition

http://www.whoi.edu/page.do?pid=8422 – Web page about DSV Alvin

http://www.ocean.udel.edu/deepsea/level-1/creature/creature. html – University of Delaware's "Creature Features" Web page

http://www.extremescience.net/DeepestFish.htm – Extreme Science "Exploring the Deep" Web page

http://people.whitman.edu/~yancey/deepsea.html – "Deep Sea Biology" Web page by Paul H. Yancey, Whitman College

National Science Education Standards

Content Standard A: Science As Inquiry

- Abilities necessary to do scientific inquiry
- Understandings about scientific inquiry

Content Standard G: History and Nature of Science

- Science as a human endeavor
- Nature of science
- History of science

Ocean Literacy Essential Principles and Fundamental Concepts

Essential Principle 5.

The ocean supports a great diversity of life and ecosystems. *Fundamental Concept e.* The ocean is three-dimensional, offering vast living space and diverse habitats from the surface through the water column to the seafloor. Most of the living space on Earth is in the ocean.

Fundamental Concept g. There are deep ocean ecosystems that are independent of energy from sunlight and photosynthetic organisms. Hydrothermal vents, submarine hot springs, and methane cold seeps rely only on chemical energy and chemosynthetic organisms to support life.

Essential Principle 6.

The ocean and humans are inextricably interconnected.

Fundamental Concept b. From the ocean we get foods, medicines, and mineral and energy resources. In addition, it provides jobs, supports our nation's economy, serves as a highway for transportation of goods and people, and plays a role in national security. *Fundamental Concept e.* Humans affect the ocean in a variety of ways. Laws, regulations and resource management affect what is taken out and put into the ocean. Human development and activity leads to pollution (such as point source, non-point source, and noise pollution) and physical modifications (such as changes to beaches, shores and rivers). In addition, humans have removed most of the large vertebrates from the ocean. *Fundamental Concept g.* Everyone is responsible for caring for the

ocean. The ocean sustains life on Earth and humans must live in ways that sustain the ocean. Individual and collective actions are needed to effectively manage ocean resources for all.

Essential Principle 7.

The ocean is largely unexplored.

Fundamental Concept a. The ocean is the last and largest unexplored place on Earth—less than 5% of it has been explored. This is the great frontier for the next generation's explorers and researchers, where they will find great opportunities for inquiry and investigation. Fundamental Concept b. Understanding the ocean is more than a matter of curiosity. Exploration, inquiry and study are required to better understand ocean systems and processes. Fundamental Concept c. Over the last 40 years, use of ocean resources has increased significantly, therefore the future sustainability of ocean resources depends on our understanding of those resources and their potential and limitations. Fundamental Concept d. New technologies, sensors and tools are expanding our ability to explore the ocean. Ocean scientists are relying more and more on satellites, drifters, buoys, subsea observatories and unmanned submersibles. Fundamental Concept f. Ocean exploration is truly interdisciplinary. It requires close collaboration among biologists, chemists, climatologists, computer programmers, engineers, geologists, meteorologists, and physicists, and new ways of thinking.

Send Us Your Feedback

We value your feedback on this lesson, including how you use it in your formal/informal education setting. Please send your comments to: oceanexeducation@noaa.gov

For More Information

Paula Keener-Chavis, Director, Education Programs NOAA Ocean Exploration Program Hollings Marine Laboratory 331 Fort Johnson Road, Charleston SC 29412 843.762.8818 843.762.8737 (fax) paula.keener-chavis@noaa.gov

Acknowledgments

This lesson plan was adapted by Mel Goodwin, PhD., Marine Biologist and Science Writer from a lesson by Robin Rutherford and Jane Settle, Porter Gaud School, Charleston, SC, for the National Oceanic and Atmospheric Administration. Layout and design by Coastal Images Graphic Design, Charleston, SC. If reproducing this lesson, please cite NOAA as the source, and provide the following URL: http://oceanexplorer.noaa.gov

Student Handout: How to Posterize Images

http://oceanexplorer.noaa.gov/ explorations/03mex/logs/sept25/ media/dsc_0055_100.jpg

4 |5 |6 |7 |8 |9 10 11 1

There are many techniques and software programs that convert photographic images to simpler outlines or images that contain fewer colors. Here is a simple technique using Adobe Illustrator® that produces outline images that can be colored with markers, crayons, or pencils.

- 1. Select an image. In general, higher resolution images will produce more detailed outlines, but may take longer to process. This is an image of a three-toothed squat lobster (*Munidopsis tridentata*) from the Ocean Explorer Gallery (http://oceanexplorer.noaa.gov/gallery/gallery.html).
- 2. Open the image in Adobe Illustrator®, and select the image with the solid arrow tool. Scroll over "Sketch" in the "Effect" drop-down menu, then select "Photocopy." Adjust the "Detail" and "Darkness" controls until you like the image, then click "OK." Note: You may need to adjust the magnification box in the lower left corner so you can see the entire image. Select "Fit on Screen" from the pop-up window that appears when you click the magnification box.
- 3. If you want to remove unwanted portions of the image, click on "Live Trace" in the "Object" drop-down menu, then "Make and Expand" (if you don't like the result, choose "Tracing Options" from the "Live Trace" menu and experiment with the presets to find one you like). When the tracing is complete, use the open arrow tool and eraser tool to remove unwanted material. Take your time, save often, and use the magnification tool to zoom in when necessary.
- 4. Rotate your image to the desired orientation, and you are ready to color! If you use fluorescent markers or crayons, you can use the Ultraviolet Illuminator for dramatic effects in a darkened room. This is especially useful to illustrate bioluminescence, which was studied during the Bioluminescence 2009: Living Light on the Deep Sea Floor, Operation Deep Scope 2005, and Operation Deep Scope 2004 Expeditions (http:// oceanexplorer.noaa.gov/explorations/09bioluminescence/welcome.html, http://oceanexplorer.noaa.gov/explorations/05deepscope/welcome.html, and http://oceanexplorer.noaa.gov/explorations/04deepscope/welcome. html, respectively).

Student Handout: LED Ultraviolet Illuminator Construction Guide

Materials

- 1 Piece balsa or bass wood, 3-1/2" x 1" x 3/8" thick
- \bullet 2 Pieces balsa or bass wood, 1-5/8" x 1" x 1/4" thick
- 1 Toggle switch, SPST (Radio Shack Part No. 275-0612, or equivalent)
- 1 Resistor, 330 ohms, 1/4 watt (Radio Shack Part No. 271-1315, or equivalent)
- 1 9-volt Battery
- 1 9-volt Battery snap connector (Radio Shack Part No. 270-325, or equivalent)
- 1 Ultraviolet light emitting diode (Mouser Electronics Part No. 593-VAOL5GUV8T4, or equivalent)
- 3" Length, 22 gauge insulated hookup wire
- 3" Length, heat shrink tubing, 1/8" inside diameter
- 5-1/4" Length, 1-1/2" inside diameter PVC pipe
- Small piece of medium (100 grit) sandpaper

[NOTE: Mention of trademarks or proprietary names does not imply endorsement by NOAA]

Tools

- Longnose pliers
- Wire cutters
- (Optional) wire stripper
- Craft saw or coping saw
- Hand or electric drill
- 1/16" and 1/4" drill bits
- Hot glue gun
- Hair dryer or heat gun
- Soldering iron and rosin-core solder (do not use acid core solder in electronic circuits!)
- Safety glasses or goggles

A note about soldering: If you have never soldered before, you may want to visit http://www.instructables.com/id/Howto-solder/. Be sure to wear safety glasses or goggles when soldering, and work in a well-ventilated space (you can set up a small fan if necessary to blow away soldering fumes).

Construction Procedure

1. Use a craft saw or coping saw to cut the two short pieces of wood according to Pattern 1. These pieces should fit snugly inside the PVC pipe. Adjust the fit with sandpaper if necessary.

Student Handout: LED Ultraviolet Illuminator Construction Guide – 2

5b

- Drill two 1/16" diameter holes in one of the short wood pieces in the locations indicated on Pattern 1. Drill one 1/4" hole in the other short wood piece as indicated on the pattern.
- 3. Mount the toggle switch on the short piece of wood with the 1/4" hole. The switch comes with two hex nuts, a flat washer, and a lockwasher. Remove all of the hardware and insert the threaded portion of the switch through the hole. You may have to press the body of the switch slightly into the balsa wood to expose enough thread to start one of the hex nuts. Tighten the nut two or three turns, then remove the nut, install the flat washer, and re-install the nut. Tighten several turns until the switch is securely mounted. NOTE: The photograph shows the switch in the "Off" position. Be sure your switch stays in this position until all steps are completed. This is a good time to mark "Off" on the wood near the switch handle.
- 4. Bend the wire leads of the LED as shown so that the leads will fit through the 1/16" holes in the other short piece of wood. Put a small dab of hot glue on the wood between the holes, and hold the LED in place until the glue sets.
- 5. Notice that the base of the LED is flattened on one side. The lead that is closest to the flattened site is the cathode of the LED which connects to the negative side of the battery. Remove about 1/2" of insulation from the black lead of the 9-volt battery snap connector. Twist the strands together, then put a 3/4" piece of heat shrink tubing over the black lead. Now, wrap the bare wire around the cathode lead from the LED about 1/4" from where it emerges from the piece of wood (a pair of longnose pliers can be helpful for this step).

Student Handout: LED Ultraviolet Illuminator Construction Guide - 3

- 6. Solder the connection by holding the heated soldering iron against the twisted wires, then touching the solder to the opposite side of the connection (don't touch the solder to the soldering iron, because the wires being soldered must be hot enough to melt the solder; otherwise the joint will be weak). Trim the excess lead coming from the LED and slide the heat shrink tubing over the joint.
- 7. Remove about 1/2" of insulation from one end of the piece of hookup wire. Twist the strands together, then wrap the bare wire around the other lead from the LED and solder the connection. Trim the excess lead coming from the LED.
- 8. Remove about 1/2" of insulation from the other end of the hookup wire and twist the strands together. Put two 3/4" pieces of heat shrink tubing over the wire, then wrap the bare wire around one lead of the resistor about 1/4" from where it emerges from the resistor body. Solder the connection. Trim the excess lead coming from the resistor. Slide the heat shrink tubing over the joint with the LED and the joint with the resistor.

- 9. Put a 3/4" piece of heatshrink tubing over the other lead of the resistor. Bend the end of the lead into a U-shaped hook, and slide the hook through one terminal of the toggle switch. Crimp the hook tightly onto the switch terminal, then solder the connection.
- 10. Remove about 1/4" of insulation from the red lead of the9-volt battery snap connector, and twist the strands together.Bend the end of the lead into a U-shaped hook, and slide thehook through the other terminal of the toggle switch. Crimpthe hook tightly onto the switch terminal, then solder theconnection.

Student Handout: LED Ultraviolet Illuminator Construction Guide – 4

13a

14

11. Heat all pieces of heat shrink tubing so that they shrink around the wires and connections they are covering.

- 12. Using hot melt glue, glue the 9-volt battery near the center of the long piece of wood.
- 13. Bend the long lead of the resistor as shown so that it will fit over the battery, then glue the short pieces of wood to the ends of the long piece of wood using hot melt glue.
- 14. Check to be sure the switch is in the "Off" position (see Step 3). Attach the snap connector to the battery, and slide the assembly into the PVC pipe so that the piece of wood with the switch is flush with one end of the pipe. If necessary, use a small amount of hot glue to hold the assembly inside the pipe. Your Ultraviolet Illuminator is finished! Test your illuminator by turning the switch on in a darkened room. Remember: NEVER LOOK DIRECTLY AT A SOURCE OF ULTRAVIOLET LIGHT!

Notes About Components

A light emitting diode (LED) is a device that acts as a one-way gate to electric current, and that under some conditions will emit light. A diode is made with two small blocks of two different silicon compounds. The two blocks are held together by an encapsulating material, and a wire lead is attached to each block. One block is called the anode and the other is called the cathode. When the anode is more positive than the cathode, an electric current will flow through the diode. In an LED, this current flow causes light to be emitted. LEDs emit only one color of light, which depends upon the specific chemistry of the silicon compounds.

A resistor is an electrical device that resists the flow of electric current. The unit for resistance measurement is the "ohm." Resistors may have a single fixed resistance, or may be variable. Photoresistors and thermistors are variable resistors whose resistance changes with exposure to light and heat respectively. The resistor used in the Ultraviolet Illuminator is a fixed resistor made with a mixture of carbon and a glue-like binder.

I

Student Data Sheet - Use with Extension #3

Quadrat No						
Animals		Plants		Burrows & Mounds		
Description	No.	Description	No.	Description	No.	Soil Description

Many scientists, including those that explore the deep ocean, use quadrats as tools for quantifying organisms. Do you think this is a good method? Why or why not?

